Simon Le Goff commited on
Commit
1e03c2b
·
1 Parent(s): 04ea210

Update description and title.

Browse files
Files changed (1) hide show
  1. app.py +20 -2
app.py CHANGED
@@ -62,7 +62,25 @@ def query(
62
 
63
 
64
  description = """
65
- Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus et nunc tincidunt tincidunt.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  """
67
 
68
  demo_inputs = [
@@ -103,7 +121,7 @@ demo = gr.Interface(
103
  fn=query,
104
  inputs=demo_inputs,
105
  outputs="image",
106
- title="pollen-vision",
107
  description=description,
108
  examples=demo_examples,
109
  )
 
62
 
63
 
64
  description = """
65
+ Welcome to the demo of pollen-vision, a simple and unified Python library to zero-shot computer vision models curated
66
+ for robotics use cases. **Pollen-vision** is designed for ease of installation and use, composed of independent modules
67
+ that can be combined to create a 3D object detection pipeline, getting the position of the objects in 3D space (x, y, z).
68
+
69
+ \n\nIn this demo, you have the option to choose between two tasks: object detection and object detection + segmentation.
70
+ The models available are:
71
+
72
+ - **OWL-VIT** (Open World Localization - Vision Transformer, By Google Research): this model performs text-conditionned
73
+ zero-shot 2D object localization in RGB images.
74
+ - **Mobile SAM**: A lightweight version of the Segment Anything Model (SAM) by Meta AI. SAM is a zero shot image
75
+ segmentation model. It can be prompted with bounding boxes or points. (https://github.com/ChaoningZhang/MobileSAM)
76
+
77
+ \n\nYou can input images in this demo in three ways: either by trying out the provided examples, by uploading an image
78
+ of your choice, or by capturing an image from your computer's webcam.
79
+ Additionally, you should provide text queries representing a list of objects to detect. Separate each object with a comma.
80
+ The last input parameter is the detection threshold (ranging from 0 to 1), which defaults to 0.1.
81
+
82
+ \n\nCheck out our blog post introducing pollen-vision or its <a href="https://github.com/pollen-robotics/pollen-vision">
83
+ Github repository</a> for more info!
84
  """
85
 
86
  demo_inputs = [
 
121
  fn=query,
122
  inputs=demo_inputs,
123
  outputs="image",
124
+ title="Use zero-shot computer vision models with pollen-vision",
125
  description=description,
126
  examples=demo_examples,
127
  )