Simon Le Goff
commited on
Commit
·
6ffeb01
1
Parent(s):
92d8e0c
Try with pollen-vision demo app now that the image builds properly.
Browse files
app.py
CHANGED
@@ -1,7 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# def greet(name):
|
4 |
+
# return "Hello " + name + "!!"
|
5 |
+
|
6 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
# iface.launch()
|
8 |
+
|
9 |
+
"""
|
10 |
+
Gradio app for pollen-vision
|
11 |
+
|
12 |
+
This script creates a Gradio app for pollen-vision. The app allows users to perform object detection and object segmentation using the OWL-ViT and MobileSAM models.
|
13 |
+
"""
|
14 |
+
|
15 |
+
from datasets import load_dataset
|
16 |
import gradio as gr
|
17 |
|
18 |
+
import numpy as np
|
19 |
+
import numpy.typing as npt
|
20 |
+
from typing import Any, Dict, List
|
21 |
+
|
22 |
+
from pollen_vision.vision_models.object_detection import OwlVitWrapper
|
23 |
+
from pollen_vision.vision_models.object_segmentation import MobileSamWrapper
|
24 |
+
from pollen_vision.vision_models.utils import Annotator, get_bboxes
|
25 |
+
|
26 |
+
|
27 |
+
owl_vit = OwlVitWrapper()
|
28 |
+
mobile_sam = MobileSamWrapper()
|
29 |
+
annotator = Annotator()
|
30 |
+
|
31 |
+
|
32 |
+
def object_detection(
|
33 |
+
img: npt.NDArray[np.uint8], text_queries: List[str], score_threshold: float
|
34 |
+
) -> List[Dict[str, Any]]:
|
35 |
+
predictions: List[Dict[str, Any]] = owl_vit.infer(
|
36 |
+
im=img, candidate_labels=text_queries, detection_threshold=score_threshold
|
37 |
+
)
|
38 |
+
return predictions
|
39 |
+
|
40 |
+
|
41 |
+
def object_segmentation(
|
42 |
+
img: npt.NDArray[np.uint8], object_detection_predictions: List[Dict[str, Any]]
|
43 |
+
) -> List[npt.NDArray[np.uint8]]:
|
44 |
+
bboxes = get_bboxes(predictions=object_detection_predictions)
|
45 |
+
masks: List[npt.NDArray[np.uint8]] = mobile_sam.infer(im=img, bboxes=bboxes)
|
46 |
+
return masks
|
47 |
+
|
48 |
+
|
49 |
+
def query(
|
50 |
+
task: str,
|
51 |
+
img: npt.NDArray[np.uint8],
|
52 |
+
text_queries: List[str],
|
53 |
+
score_threshold: float,
|
54 |
+
) -> npt.NDArray[np.uint8]:
|
55 |
+
object_detection_predictions = object_detection(
|
56 |
+
img=img, text_queries=text_queries, score_threshold=score_threshold
|
57 |
+
)
|
58 |
+
|
59 |
+
if task == "Object detection + segmentation (OWL-ViT + MobileSAM)":
|
60 |
+
masks = object_segmentation(
|
61 |
+
img=img, object_detection_predictions=object_detection_predictions
|
62 |
+
)
|
63 |
+
img = annotator.annotate(
|
64 |
+
im=img, detection_predictions=object_detection_predictions, masks=masks
|
65 |
+
)
|
66 |
+
return img
|
67 |
+
|
68 |
+
img = annotator.annotate(im=img, detection_predictions=object_detection_predictions)
|
69 |
+
return img
|
70 |
+
|
71 |
+
|
72 |
+
description = """
|
73 |
+
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus et nunc tincidunt tincidunt.
|
74 |
+
"""
|
75 |
+
|
76 |
+
demo_inputs = [
|
77 |
+
gr.Dropdown(
|
78 |
+
[
|
79 |
+
"Object detection (OWL-ViT)",
|
80 |
+
"Object detection + segmentation (OWL-ViT + MobileSAM)",
|
81 |
+
],
|
82 |
+
label="Choose a task",
|
83 |
+
value="Object detection (OWL-ViT)",
|
84 |
+
),
|
85 |
+
gr.Image(),
|
86 |
+
"text",
|
87 |
+
gr.Slider(0, 1, value=0.1),
|
88 |
+
]
|
89 |
+
|
90 |
+
rdt_dataset = load_dataset("pollen-robotics/reachy-doing-things", split="train")
|
91 |
+
|
92 |
+
img_kitchen_detection = rdt_dataset[11]["image"]
|
93 |
+
img_kitchen_segmentation = rdt_dataset[12]["image"]
|
94 |
+
|
95 |
+
demo_examples = [
|
96 |
+
[
|
97 |
+
"Object detection (OWL-ViT)",
|
98 |
+
img_kitchen_detection,
|
99 |
+
["kettle", "black mug", "sink", "blue mug", "sponge", "bag of chips"],
|
100 |
+
0.15,
|
101 |
+
],
|
102 |
+
[
|
103 |
+
"Object detection + segmentation (OWL-ViT + MobileSAM)",
|
104 |
+
img_kitchen_segmentation,
|
105 |
+
["blue mug", "paper cup", "kettle", "sponge"],
|
106 |
+
0.12,
|
107 |
+
],
|
108 |
+
]
|
109 |
|
110 |
+
demo = gr.Interface(
|
111 |
+
fn=query,
|
112 |
+
inputs=demo_inputs,
|
113 |
+
outputs="image",
|
114 |
+
title="pollen-vision",
|
115 |
+
description=description,
|
116 |
+
examples=demo_examples,
|
117 |
+
)
|
118 |
+
demo.launch()
|