rromb commited on
Commit
677e3db
β€’
1 Parent(s): d2152a2

add vqgan loss with codebook statistic eval

Browse files

Former-commit-id: f13bf9bf463d95b5a16aeadd2b02abde31f769f8

Files changed (1) hide show
  1. ldm/modules/losses/vqperceptual.py +167 -0
ldm/modules/losses/vqperceptual.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ from einops import repeat
5
+
6
+ from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
7
+ from taming.modules.losses.lpips import LPIPS
8
+ from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
9
+
10
+
11
+ def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
12
+ assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
13
+ loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
14
+ loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
15
+ loss_real = (weights * loss_real).sum() / weights.sum()
16
+ loss_fake = (weights * loss_fake).sum() / weights.sum()
17
+ d_loss = 0.5 * (loss_real + loss_fake)
18
+ return d_loss
19
+
20
+ def adopt_weight(weight, global_step, threshold=0, value=0.):
21
+ if global_step < threshold:
22
+ weight = value
23
+ return weight
24
+
25
+
26
+ def measure_perplexity(predicted_indices, n_embed):
27
+ # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
28
+ # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
29
+ encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
30
+ avg_probs = encodings.mean(0)
31
+ perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
32
+ cluster_use = torch.sum(avg_probs > 0)
33
+ return perplexity, cluster_use
34
+
35
+ def l1(x, y):
36
+ return torch.abs(x-y)
37
+
38
+
39
+ def l2(x, y):
40
+ return torch.pow((x-y), 2)
41
+
42
+
43
+ class VQLPIPSWithDiscriminator(nn.Module):
44
+ def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
45
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
46
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
47
+ disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
48
+ pixel_loss="l1"):
49
+ super().__init__()
50
+ assert disc_loss in ["hinge", "vanilla"]
51
+ assert perceptual_loss in ["lpips", "clips", "dists"]
52
+ assert pixel_loss in ["l1", "l2"]
53
+ self.codebook_weight = codebook_weight
54
+ self.pixel_weight = pixelloss_weight
55
+ if perceptual_loss == "lpips":
56
+ print(f"{self.__class__.__name__}: Running with LPIPS.")
57
+ self.perceptual_loss = LPIPS().eval()
58
+ else:
59
+ raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
60
+ self.perceptual_weight = perceptual_weight
61
+
62
+ if pixel_loss == "l1":
63
+ self.pixel_loss = l1
64
+ else:
65
+ self.pixel_loss = l2
66
+
67
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
68
+ n_layers=disc_num_layers,
69
+ use_actnorm=use_actnorm,
70
+ ndf=disc_ndf
71
+ ).apply(weights_init)
72
+ self.discriminator_iter_start = disc_start
73
+ if disc_loss == "hinge":
74
+ self.disc_loss = hinge_d_loss
75
+ elif disc_loss == "vanilla":
76
+ self.disc_loss = vanilla_d_loss
77
+ else:
78
+ raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
79
+ print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
80
+ self.disc_factor = disc_factor
81
+ self.discriminator_weight = disc_weight
82
+ self.disc_conditional = disc_conditional
83
+ self.n_classes = n_classes
84
+
85
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
86
+ if last_layer is not None:
87
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
88
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
89
+ else:
90
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
91
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
92
+
93
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
94
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
95
+ d_weight = d_weight * self.discriminator_weight
96
+ return d_weight
97
+
98
+ def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
99
+ global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
100
+ if not exists(codebook_loss):
101
+ codebook_loss = torch.tensor([0.]).to(inputs.device)
102
+ #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
103
+ rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
104
+ if self.perceptual_weight > 0:
105
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
106
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
107
+ else:
108
+ p_loss = torch.tensor([0.0])
109
+
110
+ nll_loss = rec_loss
111
+ #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
112
+ nll_loss = torch.mean(nll_loss)
113
+
114
+ # now the GAN part
115
+ if optimizer_idx == 0:
116
+ # generator update
117
+ if cond is None:
118
+ assert not self.disc_conditional
119
+ logits_fake = self.discriminator(reconstructions.contiguous())
120
+ else:
121
+ assert self.disc_conditional
122
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
123
+ g_loss = -torch.mean(logits_fake)
124
+
125
+ try:
126
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
127
+ except RuntimeError:
128
+ assert not self.training
129
+ d_weight = torch.tensor(0.0)
130
+
131
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
132
+ loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
133
+
134
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
135
+ "{}/quant_loss".format(split): codebook_loss.detach().mean(),
136
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
137
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
138
+ "{}/p_loss".format(split): p_loss.detach().mean(),
139
+ "{}/d_weight".format(split): d_weight.detach(),
140
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
141
+ "{}/g_loss".format(split): g_loss.detach().mean(),
142
+ }
143
+ if predicted_indices is not None:
144
+ assert self.n_classes is not None
145
+ with torch.no_grad():
146
+ perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
147
+ log[f"{split}/perplexity"] = perplexity
148
+ log[f"{split}/cluster_usage"] = cluster_usage
149
+ return loss, log
150
+
151
+ if optimizer_idx == 1:
152
+ # second pass for discriminator update
153
+ if cond is None:
154
+ logits_real = self.discriminator(inputs.contiguous().detach())
155
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
156
+ else:
157
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
158
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
159
+
160
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
161
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
162
+
163
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
164
+ "{}/logits_real".format(split): logits_real.detach().mean(),
165
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
166
+ }
167
+ return d_loss, log