Spaces:
Sleeping
Sleeping
import streamlit as st | |
import plotly.graph_objects as go | |
import numpy as np | |
import scipy.integrate as integrate | |
def _false_positive_probability(threshold, b, r): | |
def _probability(s): | |
return 1 - (1 - s ** float(r)) ** float(b) | |
a, err = integrate.quad(_probability, 0.0, threshold) | |
return a | |
def _false_negative_probability(threshold, b, r): | |
def _probability(s): | |
return 1 - (1 - (1 - s ** float(r)) ** float(b)) | |
a, err = integrate.quad(_probability, threshold, 1.0) | |
return a | |
def _optimal_param(threshold, num_perm, false_positive_weight, false_negative_weight): | |
""" | |
Compute the optimal `MinHashLSH` parameter that minimizes the weighted sum | |
of probabilities of false positive and false negative. | |
""" | |
min_error = float("inf") | |
opt = (0, 0) | |
for b in range(1, num_perm + 1): | |
max_r = int(num_perm / b) | |
for r in range(1, max_r + 1): | |
fp = _false_positive_probability(threshold, b, r) | |
fn = _false_negative_probability(threshold, b, r) | |
error = fp * false_positive_weight + fn * false_negative_weight | |
if error < min_error: | |
min_error = error | |
opt = (b, r) | |
return opt | |
col1, col2 = st.columns(2) | |
s = col1.slider("Select a Jaccard similarity", 0.0, 1.0, 0.1) | |
p = col2.slider("Select a number of permutations", 0, 1000, 10) | |
optimal_b, optimal_r = _optimal_param(s, p, 1, 1) | |
b = col1.slider("Select a number of bands", 1, 100, 1) | |
r = col2.slider("Select a number of rows per band", 1, 100, 1) | |
col1.metric(label="Optimal number of bands", value=optimal_b) | |
col2.metric(label="Optimal number of rows per band", value=optimal_r) | |
st.markdown("---") | |
st.markdown(f"Two documents that have a Jaccard similarity of $s={s}$ will have:") | |
st.markdown(f"1. ${s * 100:.2f}\%$ of their k-shingles will be the same") | |
st.markdown(f"2. ${s * 100:.2f}\%$ of their k-shingles' hashes will be the same") | |
st.markdown(f"4. ${s * 100:.2f}\%$ of the time, a particular hash will be the same for two documents") | |
st.markdown( | |
f"3. $s^r={100 * s ** r:.2f}\%$ of the time, they will have the same hashes for a particular band of $r={r}$ rows" | |
) | |
st.markdown( | |
f"5. $1 - s^r = {100 * (1 - s ** r):.2f}\%$ of the time, they will have at least one different hash for a particular band" | |
) | |
st.markdown( | |
f"6. $(1 - s^r)^b = {100 * (1 - s ** r)**b:.2f}\%$ of the time, they will have at least one different hash for all $b={b}$ bands" | |
) | |
st.markdown( | |
f"7. $1 - (1 - s^r)^b={100 * (1 - (1 - s ** r)**b):.2f}\%$ of the time, they will have at least one band with the same hashes" | |
) | |
t = st.slider("Select a Jaccard similarity threshold", 0.0, 1.0, 0.1) | |
x = np.linspace(0, 1, 1000) | |
y = 1 - (1 - x**r) ** b | |
fig = go.Figure( | |
data=go.Scatter( | |
x=x, | |
y=y, | |
showlegend=False, | |
) | |
) | |
fig = fig.add_shape( | |
type="line", | |
x0=t, | |
y0=0, | |
x1=t, | |
y1=1, | |
line=dict( | |
color="Red", | |
width=4, | |
), | |
) | |
false_positive_x = [d for d in x if d <= t] + [t] | |
false_positive_y = [d for i, d in enumerate(y) if x[i] <= t] + [0] | |
fig.add_trace( | |
go.Scatter( | |
x=false_positive_x, | |
y=false_positive_y, | |
fill="tozeroy", | |
fillcolor="rgba(255, 0, 0, 0.2)", | |
line_color="rgba(255, 0, 0, 0)", | |
showlegend=False, | |
) | |
) | |
false_negative_x = [d for d in x if d > t] | |
false_negative_y = [d for i, d in enumerate(y) if x[i] > t] | |
fig.add_trace( | |
go.Scatter( | |
x=[t] + false_negative_x + [1], | |
y=[1] + false_negative_y + [1], | |
fill="toself", | |
fillcolor="rgba(0, 255, 0, 0.2)", | |
line_color="rgba(0, 255, 0, 0)", | |
showlegend=False, | |
) | |
) | |
st.plotly_chart(fig) | |
false_positive = integrate.quad(lambda x: 1 - (1 - x**r) ** b, 0, t)[0] | |
false_negative = integrate.quad(lambda x: (1 - x**r) ** b, t, 1)[0] | |
cols = st.columns(2) | |
cols[0].metric(label="False positive area", value=f"{false_positive:.2f}") | |
cols[1].metric(label="False negative area", value=f"{false_negative:.2f}") |