import os import gc import csv import socket import json import huggingface_hub import requests import re as r import gradio as gr import pandas as pd from huggingface_hub import Repository from urllib.request import urlopen from transformers import AutoTokenizer, AutoModelWithLMHead # from transformers import AutoModelForCausalLM, AutoTokenizer ## connection with HF datasets HF_TOKEN = os.environ.get("HF_TOKEN") # DATASET_NAME = "emotion_detection_dataset" # DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}" DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/emotion_detection_dataset" DATA_FILENAME = "emotion_detection_logs.csv" DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME) DATASET_REPO_ID = "pragnakalp/emotion_detection_dataset" print("is none?", HF_TOKEN is None) try: hf_hub_download( repo_id=DATASET_REPO_ID, filename=DATA_FILENAME, cache_dir=DATA_DIRNAME, force_filename=DATA_FILENAME ) except: print("file not found") repo = Repository( local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him.""" ## load model cwd = os.getcwd() model_path = os.path.join(cwd) # try: tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion") model_base = AutoModelWithLMHead.from_pretrained(model_path) # Instead of AutoModelWithLMHead # model_base = AutoModelForCausalLM.from_pretrained(model_path) # except Exception as e: # print(f"Error loading model: {e}") def getIP(): ip_address = '' try: d = str(urlopen('http://checkip.dyndns.com/') .read()) return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1) except Exception as e: print("Error while getting IP address -->",e) return ip_address def get_location(ip_addr): location = {} try: ip=ip_addr req_data={ "ip":ip, "token":"pkml123" } url = "https://demos.pragnakalp.com/get-ip-location" # req_data=json.dumps(req_data) # print("req_data",req_data) headers = {'Content-Type': 'application/json'} response = requests.request("POST", url, headers=headers, data=json.dumps(req_data)) response = response.json() print("response======>>",response) return response except Exception as e: print("Error while getting location -->",e) return location """ generate emotions of the sentences """ def get_emotion(text): # input_ids = tokenizer.encode(text + '', return_tensors='pt') input_ids = tokenizer.encode(text, return_tensors='pt') output = model_base.generate(input_ids=input_ids, max_length=2) dec = [tokenizer.decode(ids) for ids in output] label = dec[0] gc.collect() return label def generate_emotion(article): table = {'Input':[], 'Detected Emotion':[]} if article.strip(): sen_list = article sen_list = sen_list.split('\n') while("" in sen_list): sen_list.remove("") sen_list_temp = sen_list[0:] print(sen_list_temp) results_dict = [] results = [] for sen in sen_list_temp: if(sen.strip()): cur_result = get_emotion(sen) results.append(cur_result) results_dict.append( { 'sentence': sen, 'emotion': cur_result } ) table = {'Input':sen_list_temp, 'Detected Emotion':results} gc.collect() save_data_and_sendmail(article,results_dict,sen_list, results) return pd.DataFrame(table) else: raise gr.Error("Please enter text in inputbox!!!!") """ Save generated details """ def save_data_and_sendmail(article,results_dict,sen_list,results): try: ip_address= getIP() print(ip_address) location = get_location(ip_address) print(location) add_csv = [article,results_dict,ip_address,location] with open(DATA_FILE, "a") as f: writer = csv.writer(f) # write the data writer.writerow(add_csv) commit_url = repo.push_to_hub() print("commit data :",commit_url) url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_emotion_detection_demo' # url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_emotion_detection' myobj = {"sentences":sen_list,"gen_results":results,"ip_addr":ip_address,'loc':location} response = requests.post(url, json = myobj) print("response=-----=",response.status_code) except Exception as e: return "Error while sending mail" + str(e) return "Successfully save data" """ UI design for demo using gradio app """ inputs = gr.Textbox(value=SENTENCES_VALUE,lines=3, label="Sentences",elem_id="inp_div") outputs = [gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"],wrap=True)] demo = gr.Interface( generate_emotion, inputs, outputs, title="Emotion Detection", css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}", article="""
Provide us your feedback on this demo and feel free to contact us at letstalk@pragnakalp.com if you want to have your own Emotion Detection system. We will be happy to serve you for your requirement. And don't forget to check out more interesting NLP services we are offering.
Developed by: Pragnakalp Techlabs
""" ) demo.launch()