File size: 10,854 Bytes
b3f1ffe
 
 
0676ee0
b3f1ffe
 
0676ee0
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0676ee0
 
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0676ee0
b3f1ffe
 
 
 
0676ee0
b3f1ffe
 
 
 
0676ee0
b3f1ffe
 
0676ee0
b3f1ffe
 
0676ee0
b3f1ffe
 
0676ee0
b3f1ffe
 
 
 
d702f61
 
 
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d702f61
b3f1ffe
 
 
d702f61
b3f1ffe
 
 
d702f61
0676ee0
 
 
 
 
 
d702f61
 
b3f1ffe
 
 
 
 
 
 
 
 
e87951e
0676ee0
e87951e
 
c1c4d18
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0676ee0
b3f1ffe
 
0676ee0
b3f1ffe
d702f61
b3f1ffe
 
d702f61
b3f1ffe
0676ee0
b3f1ffe
 
d702f61
b3f1ffe
0676ee0
b3f1ffe
 
d702f61
 
 
0676ee0
d702f61
 
0676ee0
b3f1ffe
d702f61
 
 
 
 
 
b3f1ffe
 
 
 
0676ee0
b3f1ffe
 
 
 
 
 
 
 
 
 
0676ee0
 
 
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
0676ee0
 
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0676ee0
 
b3f1ffe
 
 
 
be398c6
 
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0676ee0
b3f1ffe
 
 
 
 
 
 
 
 
0676ee0
b3f1ffe
 
 
 
 
 
 
 
 
 
ac9e241
b3f1ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import streamlit as st
from chat_client import chat
import time
from utils import gen_augmented_prompt_via_websearch, inital_prompt_engineering_dict


COST_PER_1000_TOKENS_USD = 0.139 * 80
CHAT_BOTS = {
    "Mixtral 8x7B v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mistral 7B v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
}


st.set_page_config(
    page_title="Mixtral Playground",
    page_icon="πŸ“š",
)


def init_state():
    if "messages" not in st.session_state:
        st.session_state.messages = []

    if "tokens_used" not in st.session_state:
        st.session_state.tokens_used = 0

    if "tps" not in st.session_state:
        st.session_state.tps = 0

    if "temp" not in st.session_state:
        st.session_state.temp = 0.8

    if "history" not in st.session_state:
        st.session_state.history = [
            [
                inital_prompt_engineering_dict["SYSTEM_INSTRUCTION"],
                inital_prompt_engineering_dict["SYSTEM_RESPONSE"],
            ]
        ]

    if "n_crawl" not in st.session_state:
        st.session_state.n_crawl = 5

    if "repetion_penalty" not in st.session_state:
        st.session_state.repetion_penalty = 1

    if "rag_enabled" not in st.session_state:
        st.session_state.rag_enabled = True

    if "chat_bot" not in st.session_state:
        st.session_state.chat_bot = "Mixtral 8x7B v0.1"

    if "search_vendor" not in st.session_state:
        st.session_state.search_vendor = "Bing"

    if "system_instruction" not in st.session_state:
        st.session_state.system_instruction = inital_prompt_engineering_dict[
            "SYSTEM_INSTRUCTION"
        ]

    if "system_response" not in st.session_state:
        st.session_state.system_instruction = inital_prompt_engineering_dict[
            "SYSTEM_RESPONSE"
        ]

    if "pre_context" not in st.session_state:
        st.session_state.pre_context = inital_prompt_engineering_dict["PRE_CONTEXT"]

    if "post_context" not in st.session_state:
        st.session_state.post_context = inital_prompt_engineering_dict["POST_CONTEXT"]

    if "pre_prompt" not in st.session_state:
        st.session_state.pre_prompt = inital_prompt_engineering_dict["PRE_PROMPT"]

    if "post_prompt" not in st.session_state:
        st.session_state.post_prompt = inital_prompt_engineering_dict["POST_PROMPT"]

    if "pass_prev" not in st.session_state:
        st.session_state.pass_prev = False

    if "chunk_size" not in st.session_state:
        st.session_state.chunk_size = 512


def sidebar():
    def retrieval_settings():
        st.markdown("# Web Retrieval")
        st.session_state.rag_enabled = st.toggle("Activate Web Retrieval", value=True)
        st.session_state.search_vendor = st.radio(
            "Select Search Vendor",
            ["Bing", "Google"],
            disabled=not st.session_state.rag_enabled,
        )
        st.session_state.n_crawl = st.slider(
            label="Links to Crawl",
            key=1,
            min_value=1,
            max_value=10,
            value=4,
            disabled=not st.session_state.rag_enabled,
        )
        st.session_state.top_k = st.slider(
            label="Chunks to Retrieve via Reranker",
            key=2,
            min_value=1,
            max_value=20,
            value=5,
            disabled=not st.session_state.rag_enabled,
        )

        st.session_state.chunk_size = st.slider(
            label="Chunk Size",
            value=512,
            min_value=128,
            max_value=1024,
            step=8,
            disabled=not st.session_state.rag_enabled,
        )

        st.markdown("---")

    def model_analytics():
        st.markdown("# Model Analytics")

        st.write("Total tokens used :", st.session_state["tokens_used"])
        st.write("Speed :", st.session_state["tps"], "  tokens/sec")
        st.write(
            "Total cost incurred :",
            round(
                COST_PER_1000_TOKENS_USD * st.session_state["tokens_used"] / 1000,
                3,
            ),
            "USD",
        )

        st.markdown("---")

    def model_settings():
        st.markdown("# Model Settings")

        st.session_state.chat_bot = st.sidebar.radio(
            "Select one:", [key for key, _ in CHAT_BOTS.items()]
        )
        st.session_state.temp = st.slider(
            label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9
        )

        st.session_state.max_tokens = st.slider(
            label="New tokens to generate",
            min_value=64,
            max_value=2048,
            step=32,
            value=512,
        )

        st.session_state.repetion_penalty = st.slider(
            label="Repetion Penalty", min_value=0.0, max_value=1.0, step=0.1, value=1.0
        )

    with st.sidebar:
        retrieval_settings()
        model_analytics()
        model_settings()

        st.markdown(
            """
        > **Created by [Pragnesh Barik](https://barik.super.site) πŸ”—**
        """
        )


def prompt_engineering_dashboard():
    def engineer_prompt():
        st.session_state.history[0] = [
            st.session_state.system_instruction,
            st.session_state.system_response,
        ]

    with st.expander("Prompt Engineering Dashboard"):
        st.info(
            "**The input to the model follows this below template**",
        )
        st.code(
            """
                    [SYSTEM INSTRUCTION]
                    [SYSTEM RESPONSE]
                    
                    [... LIST OF PREV INPUTS]
                    
                    [PRE CONTEXT]
                    [CONTEXT RETRIEVED FROM THE WEB]
                    [POST CONTEXT]

                    [PRE PROMPT]
                    [PROMPT]
                    [POST PROMPT]
                    [PREV GENERATED INPUT] # Only if  Pass previous prompt set True  

                    """
        )
        st.session_state.system_instruction = st.text_area(
            label="SYSTEM INSTRUCTION",
            value=inital_prompt_engineering_dict["SYSTEM_INSTRUCTION"],
        )
        st.session_state.system_response = st.text_area(
            "SYSTEM RESPONSE", value=inital_prompt_engineering_dict["SYSTEM_RESPONSE"]
        )

        col1, col2 = st.columns(2)
        with col1:
            st.session_state.pre_context = st.text_input(
                "PRE CONTEXT",
                value=inital_prompt_engineering_dict["PRE_CONTEXT"],
                disabled=not st.session_state.rag_enabled,
            )
            st.session_state.post_context = st.text_input(
                "POST CONTEXT",
                value=inital_prompt_engineering_dict["POST_CONTEXT"],
                disabled=not st.session_state.rag_enabled,
            )

        with col2:
            st.session_state.pre_prompt = st.text_input(
                "PRE PROMPT", value=inital_prompt_engineering_dict["PRE_PROMPT"]
            )
            st.session_state.post_prompt = st.text_input(
                "POST PROMPT", value=inital_prompt_engineering_dict["POST_PROMPT"]
            )

        col3, col4 = st.columns(2)
        with col3:
            st.session_state.pass_prev = st.toggle("Pass previous Output")
        with col4:
            st.button("Engineer Prompts", on_click=engineer_prompt)


def header():
    st.write("# Mixtral Playground")

    prompt_engineering_dashboard()


def chat_box():
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])


def generate_chat_stream(prompt):
    # 1. augments prompt according to the template
    # 2. returns chat_stream and source links
    # 3. chat_stream and source links are used by stream_handler and show_source
    links = []
    if st.session_state.rag_enabled:
        with st.spinner("Fetching relevent documents from Web...."):
            prompt, links = gen_augmented_prompt_via_websearch(
                prompt=prompt,
                pre_context=st.session_state.pre_context,
                post_context=st.session_state.post_context,
                pre_prompt=st.session_state.pre_prompt,
                post_prompt=st.session_state.post_prompt,
                vendor=st.session_state.search_vendor,
                top_k=st.session_state.top_k,
                n_crawl=st.session_state.n_crawl,
                pass_prev=st.session_state.pass_prev,
                prev_output=st.session_state.history[-1][1],
            )

    with st.spinner("Generating response..."):
        chat_stream = chat(
            prompt,
            st.session_state.history,
            chat_client=CHAT_BOTS[st.session_state.chat_bot],
            temperature=st.session_state.temp,
            max_new_tokens=st.session_state.max_tokens,
        )

    return chat_stream, links


def stream_handler(chat_stream, placeholder):
    # 1. Uses the chat_stream and streams message on placeholder
    # 2. returns full_response for token calculation
    start_time = time.time()
    full_response = ""

    for chunk in chat_stream:
        if chunk.token.text != "</s>":
            full_response += chunk.token.text
            placeholder.markdown(full_response + "β–Œ")
    placeholder.markdown(full_response)

    end_time = time.time()
    elapsed_time = end_time - start_time
    total_tokens_processed = len(full_response.split())
    tokens_per_second = total_tokens_processed // elapsed_time
    len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
    col1, col2, col3 = st.columns(3)

    with col1:
        st.write(f"**{tokens_per_second} tokens/second**")

    with col2:
        st.write(f"**{int(len_response)} tokens generated**")

    with col3:
        st.write(
            f"**$ {round(len_response * COST_PER_1000_TOKENS_USD  / 1000, 5)} cost incurred**"
        )

    st.session_state["tps"] = tokens_per_second
    st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]

    return full_response


def show_source(links):
    # Expander component to show source
    with st.expander("Show source"):
        for i, link in enumerate(links):
            st.info(f"{link}")


init_state()
sidebar()
header()
chat_box()

# Main chat loop
if prompt := st.chat_input("Generate Ebook"):
    st.chat_message("user").markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    chat_stream, links = generate_chat_stream(prompt)

    with st.chat_message("assistant"):
        placeholder = st.empty()
        full_response = stream_handler(chat_stream, placeholder)
        if st.session_state.rag_enabled:
            show_source(links)

    st.session_state.history.append([prompt, full_response])
    st.session_state.messages.append({"role": "assistant", "content": full_response})