Spaces:
Running
Running
File size: 10,854 Bytes
b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe d702f61 b3f1ffe d702f61 b3f1ffe d702f61 b3f1ffe d702f61 0676ee0 d702f61 b3f1ffe e87951e 0676ee0 e87951e c1c4d18 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe d702f61 b3f1ffe d702f61 b3f1ffe 0676ee0 b3f1ffe d702f61 b3f1ffe 0676ee0 b3f1ffe d702f61 0676ee0 d702f61 0676ee0 b3f1ffe d702f61 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe be398c6 b3f1ffe 0676ee0 b3f1ffe 0676ee0 b3f1ffe ac9e241 b3f1ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import streamlit as st
from chat_client import chat
import time
from utils import gen_augmented_prompt_via_websearch, inital_prompt_engineering_dict
COST_PER_1000_TOKENS_USD = 0.139 * 80
CHAT_BOTS = {
"Mixtral 8x7B v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mistral 7B v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
}
st.set_page_config(
page_title="Mixtral Playground",
page_icon="π",
)
def init_state():
if "messages" not in st.session_state:
st.session_state.messages = []
if "tokens_used" not in st.session_state:
st.session_state.tokens_used = 0
if "tps" not in st.session_state:
st.session_state.tps = 0
if "temp" not in st.session_state:
st.session_state.temp = 0.8
if "history" not in st.session_state:
st.session_state.history = [
[
inital_prompt_engineering_dict["SYSTEM_INSTRUCTION"],
inital_prompt_engineering_dict["SYSTEM_RESPONSE"],
]
]
if "n_crawl" not in st.session_state:
st.session_state.n_crawl = 5
if "repetion_penalty" not in st.session_state:
st.session_state.repetion_penalty = 1
if "rag_enabled" not in st.session_state:
st.session_state.rag_enabled = True
if "chat_bot" not in st.session_state:
st.session_state.chat_bot = "Mixtral 8x7B v0.1"
if "search_vendor" not in st.session_state:
st.session_state.search_vendor = "Bing"
if "system_instruction" not in st.session_state:
st.session_state.system_instruction = inital_prompt_engineering_dict[
"SYSTEM_INSTRUCTION"
]
if "system_response" not in st.session_state:
st.session_state.system_instruction = inital_prompt_engineering_dict[
"SYSTEM_RESPONSE"
]
if "pre_context" not in st.session_state:
st.session_state.pre_context = inital_prompt_engineering_dict["PRE_CONTEXT"]
if "post_context" not in st.session_state:
st.session_state.post_context = inital_prompt_engineering_dict["POST_CONTEXT"]
if "pre_prompt" not in st.session_state:
st.session_state.pre_prompt = inital_prompt_engineering_dict["PRE_PROMPT"]
if "post_prompt" not in st.session_state:
st.session_state.post_prompt = inital_prompt_engineering_dict["POST_PROMPT"]
if "pass_prev" not in st.session_state:
st.session_state.pass_prev = False
if "chunk_size" not in st.session_state:
st.session_state.chunk_size = 512
def sidebar():
def retrieval_settings():
st.markdown("# Web Retrieval")
st.session_state.rag_enabled = st.toggle("Activate Web Retrieval", value=True)
st.session_state.search_vendor = st.radio(
"Select Search Vendor",
["Bing", "Google"],
disabled=not st.session_state.rag_enabled,
)
st.session_state.n_crawl = st.slider(
label="Links to Crawl",
key=1,
min_value=1,
max_value=10,
value=4,
disabled=not st.session_state.rag_enabled,
)
st.session_state.top_k = st.slider(
label="Chunks to Retrieve via Reranker",
key=2,
min_value=1,
max_value=20,
value=5,
disabled=not st.session_state.rag_enabled,
)
st.session_state.chunk_size = st.slider(
label="Chunk Size",
value=512,
min_value=128,
max_value=1024,
step=8,
disabled=not st.session_state.rag_enabled,
)
st.markdown("---")
def model_analytics():
st.markdown("# Model Analytics")
st.write("Total tokens used :", st.session_state["tokens_used"])
st.write("Speed :", st.session_state["tps"], " tokens/sec")
st.write(
"Total cost incurred :",
round(
COST_PER_1000_TOKENS_USD * st.session_state["tokens_used"] / 1000,
3,
),
"USD",
)
st.markdown("---")
def model_settings():
st.markdown("# Model Settings")
st.session_state.chat_bot = st.sidebar.radio(
"Select one:", [key for key, _ in CHAT_BOTS.items()]
)
st.session_state.temp = st.slider(
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9
)
st.session_state.max_tokens = st.slider(
label="New tokens to generate",
min_value=64,
max_value=2048,
step=32,
value=512,
)
st.session_state.repetion_penalty = st.slider(
label="Repetion Penalty", min_value=0.0, max_value=1.0, step=0.1, value=1.0
)
with st.sidebar:
retrieval_settings()
model_analytics()
model_settings()
st.markdown(
"""
> **Created by [Pragnesh Barik](https://barik.super.site) π**
"""
)
def prompt_engineering_dashboard():
def engineer_prompt():
st.session_state.history[0] = [
st.session_state.system_instruction,
st.session_state.system_response,
]
with st.expander("Prompt Engineering Dashboard"):
st.info(
"**The input to the model follows this below template**",
)
st.code(
"""
[SYSTEM INSTRUCTION]
[SYSTEM RESPONSE]
[... LIST OF PREV INPUTS]
[PRE CONTEXT]
[CONTEXT RETRIEVED FROM THE WEB]
[POST CONTEXT]
[PRE PROMPT]
[PROMPT]
[POST PROMPT]
[PREV GENERATED INPUT] # Only if Pass previous prompt set True
"""
)
st.session_state.system_instruction = st.text_area(
label="SYSTEM INSTRUCTION",
value=inital_prompt_engineering_dict["SYSTEM_INSTRUCTION"],
)
st.session_state.system_response = st.text_area(
"SYSTEM RESPONSE", value=inital_prompt_engineering_dict["SYSTEM_RESPONSE"]
)
col1, col2 = st.columns(2)
with col1:
st.session_state.pre_context = st.text_input(
"PRE CONTEXT",
value=inital_prompt_engineering_dict["PRE_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
st.session_state.post_context = st.text_input(
"POST CONTEXT",
value=inital_prompt_engineering_dict["POST_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
with col2:
st.session_state.pre_prompt = st.text_input(
"PRE PROMPT", value=inital_prompt_engineering_dict["PRE_PROMPT"]
)
st.session_state.post_prompt = st.text_input(
"POST PROMPT", value=inital_prompt_engineering_dict["POST_PROMPT"]
)
col3, col4 = st.columns(2)
with col3:
st.session_state.pass_prev = st.toggle("Pass previous Output")
with col4:
st.button("Engineer Prompts", on_click=engineer_prompt)
def header():
st.write("# Mixtral Playground")
prompt_engineering_dashboard()
def chat_box():
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def generate_chat_stream(prompt):
# 1. augments prompt according to the template
# 2. returns chat_stream and source links
# 3. chat_stream and source links are used by stream_handler and show_source
links = []
if st.session_state.rag_enabled:
with st.spinner("Fetching relevent documents from Web...."):
prompt, links = gen_augmented_prompt_via_websearch(
prompt=prompt,
pre_context=st.session_state.pre_context,
post_context=st.session_state.post_context,
pre_prompt=st.session_state.pre_prompt,
post_prompt=st.session_state.post_prompt,
vendor=st.session_state.search_vendor,
top_k=st.session_state.top_k,
n_crawl=st.session_state.n_crawl,
pass_prev=st.session_state.pass_prev,
prev_output=st.session_state.history[-1][1],
)
with st.spinner("Generating response..."):
chat_stream = chat(
prompt,
st.session_state.history,
chat_client=CHAT_BOTS[st.session_state.chat_bot],
temperature=st.session_state.temp,
max_new_tokens=st.session_state.max_tokens,
)
return chat_stream, links
def stream_handler(chat_stream, placeholder):
# 1. Uses the chat_stream and streams message on placeholder
# 2. returns full_response for token calculation
start_time = time.time()
full_response = ""
for chunk in chat_stream:
if chunk.token.text != "</s>":
full_response += chunk.token.text
placeholder.markdown(full_response + "β")
placeholder.markdown(full_response)
end_time = time.time()
elapsed_time = end_time - start_time
total_tokens_processed = len(full_response.split())
tokens_per_second = total_tokens_processed // elapsed_time
len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
col1, col2, col3 = st.columns(3)
with col1:
st.write(f"**{tokens_per_second} tokens/second**")
with col2:
st.write(f"**{int(len_response)} tokens generated**")
with col3:
st.write(
f"**$ {round(len_response * COST_PER_1000_TOKENS_USD / 1000, 5)} cost incurred**"
)
st.session_state["tps"] = tokens_per_second
st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
return full_response
def show_source(links):
# Expander component to show source
with st.expander("Show source"):
for i, link in enumerate(links):
st.info(f"{link}")
init_state()
sidebar()
header()
chat_box()
# Main chat loop
if prompt := st.chat_input("Generate Ebook"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
chat_stream, links = generate_chat_stream(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
if st.session_state.rag_enabled:
show_source(links)
st.session_state.history.append([prompt, full_response])
st.session_state.messages.append({"role": "assistant", "content": full_response})
|