File size: 6,798 Bytes
688dd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ca152
688dd55
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import re
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from groq import Groq
import os
from dotenv import load_dotenv

# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')

courses = []

# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
    img_tag = course_card.find('img', class_='course-card__img')
    
    if img_tag:
        title = img_tag.get('alt')
        image_url = img_tag.get('src')
        
        link_tag = course_card.find_previous('a')
        if link_tag:
            course_link = link_tag.get('href')
            if not course_link.startswith('http'):
                course_link = 'https://courses.analyticsvidhya.com' + course_link

            courses.append({
                'title': title,
                'image_url': image_url,
                'course_link': course_link
            })

# Step 2: Create DataFrame
df = pd.DataFrame(courses)


load_dotenv()
client = Groq(api_key=os.getenv("GROQ_API_KEY"))

def search_courses(query):
    try:
        print(f"Searching for: {query}")
        print(f"Number of courses in database: {len(df)}")

        # Prepare the prompt for Groq
        prompt = f"""Given the following query: "{query}"

        Please analyze the query and rank the following courses based on their relevance to the query. 

        Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.

        Only return courses with a relevance score of 0.5 or higher.

        Return the results in the following format:

        Title: [Course Title]

        Relevance: [Score]

        

        Courses:

        {df['title'].to_string(index=False)}

        """

        print("Sending request to Groq...")
        # Get response from Groq
        response = client.chat.completions.create(
            model="llama-3.2-1b-preview",
            messages=[
                {"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.2,
            max_tokens=1000
        )
        print("Received response from Groq")

        # Parse Groq's response
        results = []
        print("Groq response content:")
        print(response.choices[0].message.content)
        
        # Use regex to extract course titles and relevance scores
        matches = re.findall(r'\*\*(.+?)\*\*\s*\(Relevance Score: (0\.\d+)\)', response.choices[0].message.content)
        
        for title, score in matches:
            title = title.strip()
            score = float(score)
            if score >= 0.5:
                matching_courses = df[df['title'].str.contains(title[:30], case=False, na=False)]
                if not matching_courses.empty:
                    course = matching_courses.iloc[0]
                    results.append({
                        'title': course['title'],  # Use the full title from the database
                        'image_url': course['image_url'],
                        'course_link': course['course_link'],
                        'score': score
                    })
                    print(f"Added course: {course['title']}")
                else:
                    print(f"Warning: Course not found in database: {title}")

        print(f"Number of results found: {len(results)}")
        return sorted(results, key=lambda x: x['score'], reverse=True)[:10]  # Return top 10 results

    except Exception as e:
        print(f"An error occurred in search_courses: {str(e)}")
        return []
    
def gradio_search(query):
    result_list = search_courses(query)
    
    if result_list:
        html_output = '<div class="results-container">'
        for item in result_list:
            course_title = item['title']
            course_image = item['image_url']
            course_link = item['course_link']
            relevance_score = round(item['score'] * 100, 2)
            
            html_output += f'''

            <div class="course-card">

                <img src="{course_image}" alt="{course_title}" class="course-image"/>

                <div class="course-info">

                    <h3>{course_title}</h3>

                    <p>Relevance: {relevance_score}%</p>

                    <a href="{course_link}" target="_blank" class="course-link">View Course</a>

                </div>

            </div>'''
        html_output += '</div>'
        return html_output
    else:
        return '<p class="no-results">No results found. Please try a different query.</p>'

custom_css = """

body {

    font-family: Arial, Helvetica, sans-serif;

    background-color: #f0f2f5;

}

.container {

    max-width: 600px;

    margin: 0 auto;

    padding: 20px;

}

.results-container {

    display: flex;

    flex-direction: column;

}

.course-card {

    background-color: white;

    border-radius: 8px;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);

    margin-bottom: 20px;

    overflow: hidden;

    width: 100%;

    transition: transform 0.2s;

}

.course-card:hover {

    transform: translateY(-5px);

}

.course-image {

    width: 100%;

    height: 200px;

    object-fit: cover;

}

.course-info {

    padding: 15px;

}

.course-info h3 {

    margin-top: 0;

    font-size: 18px;

    color: #333;

}

.course-info p {

    color: #666;

    font-size: 14px;

    margin-bottom: 10px;

}

.course-link {

    display: inline-block;

    background-color: #007bff;

    color: white;

    padding: 8px 12px;

    text-decoration: none;

    border-radius: 4px;

    font-size: 14px;

    transition: background-color 0.2s;

}

.course-link:hover {

    background-color: #0056b3;

}

.no-results {

    text-align: center;

    color: #666;

    font-style: italic;

}

"""
# Gradio interface
iface = gr.Interface(
    fn=gradio_search,
    inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
    outputs=gr.HTML(label="Search Results"),
    title="Analytics Vidhya Smart Search Tool🔍🌐",
    description="Find the most relevant courses from Analytics Vidhya Website based on your query.",
    theme="huggingface",
    css=custom_css,
    examples=[
        ["Tableau Course"],
        ["Machine Learning/Deep Learning with Python"],
        ["Business Analytics"]
    ],
)

if __name__ == "__main__":
    iface.launch(debug=True)