Spaces:
Sleeping
Sleeping
pravin007s
commited on
Upload gen_ai_project_f.py
Browse files- gen_ai_project_f.py +137 -0
gen_ai_project_f.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""gen ai project f.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Install necessary packages
|
11 |
+
!pip install transformers torch diffusers streamlit gradio huggingface_hub
|
12 |
+
!pip install pyngrok # For exposing the app to the public
|
13 |
+
!pip install sacremoses
|
14 |
+
!pip install sentencepiece
|
15 |
+
|
16 |
+
from huggingface_hub import login
|
17 |
+
|
18 |
+
login(token="hf_gen")
|
19 |
+
|
20 |
+
!pip install requests
|
21 |
+
!pip install Pillow
|
22 |
+
|
23 |
+
# Import necessary libraries
|
24 |
+
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
25 |
+
|
26 |
+
# Load the translation model and tokenizer
|
27 |
+
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
28 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
29 |
+
model = MarianMTModel.from_pretrained(model_name)
|
30 |
+
|
31 |
+
# Create a translation pipeline
|
32 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
33 |
+
|
34 |
+
# Function for translation
|
35 |
+
def translate_text(tamil_text):
|
36 |
+
try:
|
37 |
+
# Perform translation
|
38 |
+
translation = translator(tamil_text, max_length=40)
|
39 |
+
translated_text = translation[0]['translation_text']
|
40 |
+
return translated_text
|
41 |
+
except Exception as e:
|
42 |
+
return f"An error occurred: {str(e)}"
|
43 |
+
|
44 |
+
# Test translation with example Tamil text
|
45 |
+
tamil_text = "மழையுடன் ஒரு பூ" # "A flower with rain"
|
46 |
+
translated_text = translate_text(tamil_text)
|
47 |
+
print(f"Translated Text: {translated_text}")
|
48 |
+
|
49 |
+
import requests
|
50 |
+
import io
|
51 |
+
from PIL import Image
|
52 |
+
import matplotlib.pyplot as plt
|
53 |
+
|
54 |
+
# API credentials and endpoint
|
55 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
56 |
+
headers = {"Authorization": "Bearer hf_gen"}
|
57 |
+
|
58 |
+
# Function to send payload and generate image
|
59 |
+
def generate_image(prompt):
|
60 |
+
try:
|
61 |
+
# Send request to API
|
62 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
63 |
+
|
64 |
+
# Check if the response is successful
|
65 |
+
if response.status_code == 200:
|
66 |
+
print("API call successful, generating image...")
|
67 |
+
image_bytes = response.content
|
68 |
+
|
69 |
+
# Try opening the image
|
70 |
+
try:
|
71 |
+
image = Image.open(io.BytesIO(image_bytes))
|
72 |
+
return image
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error opening image: {e}")
|
75 |
+
else:
|
76 |
+
# Handle non-200 responses
|
77 |
+
print(f"Failed to get image: Status code {response.status_code}")
|
78 |
+
print("Response content:", response.text) # Print response for debugging
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
print(f"An error occurred: {e}")
|
82 |
+
|
83 |
+
# Display image
|
84 |
+
def show_image(image):
|
85 |
+
if image:
|
86 |
+
plt.imshow(image)
|
87 |
+
plt.axis('off') # Hide axes
|
88 |
+
plt.show()
|
89 |
+
else:
|
90 |
+
print("No image to display")
|
91 |
+
|
92 |
+
# Test the function with a prompt
|
93 |
+
prompt = "A flower with rain"
|
94 |
+
image = generate_image(prompt)
|
95 |
+
|
96 |
+
# Display the generated image
|
97 |
+
show_image(image)
|
98 |
+
|
99 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
100 |
+
|
101 |
+
# Load GPT-Neo model for creative text generation
|
102 |
+
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
103 |
+
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
104 |
+
|
105 |
+
# Function to generate creative text based on translated text
|
106 |
+
def generate_creative_text(translated_text):
|
107 |
+
input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
|
108 |
+
generated_text_ids = gpt_neo_model.generate(input_ids, max_length=100)
|
109 |
+
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
|
110 |
+
return creative_text
|
111 |
+
|
112 |
+
import gradio as gr
|
113 |
+
|
114 |
+
# Function to handle the full workflow
|
115 |
+
def translate_generate_image_and_text(tamil_text):
|
116 |
+
# Step 1: Translate Tamil text to English
|
117 |
+
translated_text = translate_text(tamil_text)
|
118 |
+
|
119 |
+
# Step 2: Generate an image based on the translated text
|
120 |
+
image = generate_image(translated_text)
|
121 |
+
|
122 |
+
# Step 3: Generate creative text based on the translated text
|
123 |
+
creative_text = generate_creative_text(translated_text)
|
124 |
+
|
125 |
+
return translated_text, creative_text, image
|
126 |
+
|
127 |
+
# Create Gradio interface
|
128 |
+
interface = gr.Interface(
|
129 |
+
fn=translate_generate_image_and_text,
|
130 |
+
inputs="text",
|
131 |
+
outputs=["text", "text", "image"],
|
132 |
+
title="Tamil to English Translation, Image Generation & Creative Text",
|
133 |
+
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation."
|
134 |
+
)
|
135 |
+
|
136 |
+
# Launch Gradio app
|
137 |
+
interface.launch()
|