pritamdeka commited on
Commit
de7836d
Β·
1 Parent(s): 97483f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -272,7 +272,7 @@ igen_pubmed = gr.Interface(keyphrase_generator,
272
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
273
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
274
  theme="dark-peach",
275
- title="PubMed Abstract Retriever", description="Generates the keyphrases from an article which best describes the article.",
276
  article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
277
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
278
  "\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
 
272
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
273
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
274
  theme="dark-peach",
275
+ title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references.",
276
  article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
277
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
278
  "\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "