File size: 13,715 Bytes
e336179
 
b476d80
 
786abd0
 
 
 
 
b476d80
e336179
b476d80
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057f7
786abd0
 
 
3b057f7
786abd0
 
 
3b057f7
 
 
 
 
 
 
 
 
 
 
d5e8fd0
 
3b057f7
 
 
 
 
 
 
 
 
 
 
 
 
786abd0
 
 
 
 
 
 
 
e336179
786abd0
 
 
 
3b057f7
 
 
 
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476d80
 
c02a1b1
e336179
b476d80
 
 
 
 
 
 
 
e336179
786abd0
 
 
 
b476d80
 
 
 
 
 
c02a1b1
 
3b057f7
 
 
b476d80
786abd0
b476d80
c02a1b1
 
b476d80
b83fa58
b476d80
c02a1b1
b476d80
 
e336179
b476d80
2a821e6
b476d80
 
2a821e6
 
786abd0
2a821e6
76cd271
2a821e6
 
 
 
 
 
 
 
 
 
 
 
 
fe86637
786abd0
fe86637
53ac3ab
fe86637
 
 
 
 
 
 
 
 
8f93c1b
fe86637
 
8f93c1b
c02a1b1
 
 
 
 
 
 
2a821e6
646f10f
2a821e6
 
 
 
fe86637
53ac3ab
fe86637
 
 
 
3f564f5
2a821e6
734b76a
53ac3ab
2a821e6
734b76a
 
53ac3ab
2a821e6
b476d80
905e633
b476d80
905e633
 
e336179
3b057f7
 
 
786abd0
 
 
 
 
 
 
 
 
 
 
 
8e47763
b55b5cd
3b057f7
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
905e633
786abd0
 
 
 
 
905e633
786abd0
 
 
 
905e633
 
 
 
786abd0
905e633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057f7
5187002
905e633
 
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057f7
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b057f7
 
 
786abd0
7f04cde
786abd0
e336179
 
3f564f5
786abd0
 
3f564f5
e336179
786abd0
 
 
 
 
 
 
646f10f
786abd0
 
 
 
 
 
 
 
 
 
8ab0259
554bd83
786abd0
8f93c1b
 
786abd0
 
 
 
 
 
 
b93dc2d
786abd0
 
 
e336179
b476d80
786abd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# -----------------------
# PROGRESS BAR HELPER
# -----------------------
def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark red animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFA07A; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF4500; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# -----------------------
# TEXT & TTS MODELS
# -----------------------
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

# -----------------------
# MULTIMODAL (OCR) MODELS
# -----------------------
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_VL,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

dtype = torch.float16 if device.type == "cuda" else torch.float32

# -----------------------
# STABLE DIFFUSION IMAGE GENERATION MODELS
# -----------------------
if torch.cuda.is_available():
    # Lightning 5 model
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V5.0_Lightning",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False
    ).to(device)
    pipe.text_encoder = pipe.text_encoder.half()
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded RealVisXL_V5.0_Lightning on Device!")
    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        print("Model RealVisXL_V5.0_Lightning Compiled!")
    
    # Lightning 4 model
    pipe2 = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    pipe2.text_encoder = pipe2.text_encoder.half()
    if ENABLE_CPU_OFFLOAD:
        pipe2.enable_model_cpu_offload()
    else:
        pipe2.to(device)
        print("Loaded RealVisXL_V4.0 on Device!")
    if USE_TORCH_COMPILE:
        pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
        print("Model RealVisXL_V4.0 Compiled!")
    
    # Turbo v3 model
    pipe3 = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V3.0_Turbo",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    pipe3.text_encoder = pipe3.text_encoder.half()
    if ENABLE_CPU_OFFLOAD:
        pipe3.enable_model_cpu_offload()
    else:
        pipe3.to(device)
        print("Loaded RealVisXL_V3.0_Turbo on Device!")
    if USE_TORCH_COMPILE:
        pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True)
        print("Model RealVisXL_V3.0_Turbo Compiled!")
else:
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V5.0_Lightning",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False
    ).to(device)
    pipe2 = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    pipe3 = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V3.0_Turbo",
        torch_dtype=dtype,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    print("Running on CPU; models loaded in float32.")

DEFAULT_MODEL = "Lightning 5"
MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"]
models = {
    "Lightning 5": pipe,
    "Lightning 4": pipe2,
    "Turbo v3": pipe3
}

def save_image(img: Image.Image) -> str:
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# -----------------------
# MAIN GENERATION FUNCTION
# -----------------------
@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    text = input_dict["text"]
    files = input_dict.get("files", [])

    lower_text = text.lower().strip()
    # If the prompt is an image generation command (using model flags)
    if (lower_text.startswith("@lightningv5") or 
        lower_text.startswith("@lightningv4") or 
        lower_text.startswith("@turbov3")):
        
        # Determine model choice based on flag.
        model_choice = None
        if "@lightningv5" in lower_text:
            model_choice = "Lightning 5"
        elif "@lightningv4" in lower_text:
            model_choice = "Lightning 4"
        elif "@turbov3" in lower_text:
            model_choice = "Turbo v3"
        
        # Remove the model flag from the prompt.
        prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE)
        prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE)
        prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE)
        prompt_clean = prompt_clean.strip().strip('"')
        
        # Default parameters for single image generation.
        width = 1024
        height = 1024
        guidance_scale = 6.0
        seed_val = 0
        randomize_seed_flag = True
        
        seed_val = int(randomize_seed_fn(seed_val, randomize_seed_flag))
        generator = torch.Generator(device=device).manual_seed(seed_val)
        
        options = {
            "prompt": prompt_clean,
            "negative_prompt": default_negative,
            "width": width,
            "height": height,
            "guidance_scale": guidance_scale,
            "num_inference_steps": 30,
            "generator": generator,
            "num_images_per_prompt": 1,
            "use_resolution_binning": True,
            "output_type": "pil",
        }
        if device.type == "cuda":
            torch.cuda.empty_cache()
        
        selected_pipe = models.get(model_choice, pipe)
        yield progress_bar_html("Processing Image Generation")
        images = selected_pipe(**options).images
        image_path = save_image(images[0])
        yield gr.Image(image_path)
        return

    # Otherwise, handle text/chat (and TTS) generation.
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})
    
    if files:
        images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield progress_bar_html("Processing with Qwen2VL Ocr")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

# -----------------------
# GRADIO INTERFACE
# -----------------------
DESCRIPTION = """
# IMAGINEO CHAT ⚡
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ['@lightningv5 Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'],
        ["Python Program for Array Rotation"],
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        ['@lightningv4 A serene landscape with mountains'],
        ['@turbov3 Abstract art, colorful and vibrant'],
        ["@tts2 What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="use the tags @lightningv5 @lightningv4 @turbov3 for image gen !"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)