Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
upload files
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: STABLE HAMSTER
|
3 |
+
emoji: 🐹
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
+
app_file: app.py
|
9 |
+
model: SG161222/RealVisXL_V4.0 / SG161222/RealVisXL_V4.0_Lightning
|
10 |
+
type: base_model, model
|
11 |
+
pinned: true
|
12 |
+
note: >-
|
13 |
+
⚠️ users are accountable for the content they generate and are responsible for
|
14 |
+
ensuring it meets appropriate ethical standards.
|
15 |
+
theme: bethecloud/storj_theme
|
16 |
+
license: creativeml-openrail-m
|
17 |
+
short_description: stable hamster | stable diffusion
|
18 |
+
---
|
19 |
+
|
20 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
21 |
+
|
22 |
+
|
23 |
+
.
|
24 |
+
|
25 |
+
.
|
26 |
+
|
27 |
+
.
|
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import json
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
+
|
12 |
+
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
css = '''
|
17 |
+
.gradio-container{max-width: 560px !important}
|
18 |
+
h1{text-align:center}
|
19 |
+
footer {
|
20 |
+
visibility: hidden
|
21 |
+
}
|
22 |
+
'''
|
23 |
+
|
24 |
+
examples = [
|
25 |
+
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
26 |
+
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K",
|
27 |
+
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
28 |
+
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
29 |
+
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
30 |
+
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") #Use SDXL Model as "MODEL_REPO" --------->>> ”VALUE”.
|
35 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
36 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
37 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
38 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
39 |
+
|
40 |
+
#Load model outside of function
|
41 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
42 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
43 |
+
MODEL_ID,
|
44 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
45 |
+
use_safetensors=True,
|
46 |
+
add_watermarker=False,
|
47 |
+
).to(device)
|
48 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
49 |
+
|
50 |
+
# <compile speedup >
|
51 |
+
if USE_TORCH_COMPILE:
|
52 |
+
pipe.compile()
|
53 |
+
|
54 |
+
# Offloading capacity (RAM)
|
55 |
+
if ENABLE_CPU_OFFLOAD:
|
56 |
+
pipe.enable_model_cpu_offload()
|
57 |
+
|
58 |
+
MAX_SEED = np.iinfo(np.int32).max
|
59 |
+
|
60 |
+
def save_image(img):
|
61 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
62 |
+
img.save(unique_name)
|
63 |
+
return unique_name
|
64 |
+
|
65 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
66 |
+
if randomize_seed:
|
67 |
+
seed = random.randint(0, MAX_SEED)
|
68 |
+
return seed
|
69 |
+
|
70 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
71 |
+
def generate(
|
72 |
+
prompt: str,
|
73 |
+
negative_prompt: str = "",
|
74 |
+
use_negative_prompt: bool = False,
|
75 |
+
seed: int = 1,
|
76 |
+
width: int = 1024,
|
77 |
+
height: int = 1024,
|
78 |
+
guidance_scale: float = 3,
|
79 |
+
num_inference_steps: int = 25,
|
80 |
+
randomize_seed: bool = False,
|
81 |
+
use_resolution_binning: bool = True,
|
82 |
+
num_images: int = 1, # Number of images to generate
|
83 |
+
progress=gr.Progress(track_tqdm=True),
|
84 |
+
):
|
85 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
86 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
87 |
+
|
88 |
+
#Options
|
89 |
+
options = {
|
90 |
+
"prompt": [prompt] * num_images,
|
91 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
92 |
+
"width": width,
|
93 |
+
"height": height,
|
94 |
+
"guidance_scale": guidance_scale,
|
95 |
+
"num_inference_steps": num_inference_steps,
|
96 |
+
"generator": generator,
|
97 |
+
"output_type": "pil",
|
98 |
+
}
|
99 |
+
|
100 |
+
if use_resolution_binning:
|
101 |
+
options["use_resolution_binning"] = True
|
102 |
+
|
103 |
+
#Images potential batches
|
104 |
+
images = []
|
105 |
+
for i in range(0, num_images, BATCH_SIZE):
|
106 |
+
batch_options = options.copy()
|
107 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
108 |
+
if "negative_prompt" in batch_options:
|
109 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
110 |
+
images.extend(pipe(**batch_options).images)
|
111 |
+
|
112 |
+
image_paths = [save_image(img) for img in images]
|
113 |
+
return image_paths, seed
|
114 |
+
|
115 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
116 |
+
gr.Markdown(DESCRIPTIONx)
|
117 |
+
with gr.Group():
|
118 |
+
with gr.Row():
|
119 |
+
prompt = gr.Text(
|
120 |
+
label="Prompt",
|
121 |
+
show_label=False,
|
122 |
+
max_lines=1,
|
123 |
+
placeholder="Enter your prompt",
|
124 |
+
container=False,
|
125 |
+
)
|
126 |
+
run_button = gr.Button("Run", scale=0)
|
127 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
128 |
+
with gr.Accordion("Advanced options", open=False, visible=False):
|
129 |
+
num_images = gr.Slider(
|
130 |
+
label="Number of Images",
|
131 |
+
minimum=1,
|
132 |
+
maximum=4,
|
133 |
+
step=1,
|
134 |
+
value=1,
|
135 |
+
)
|
136 |
+
with gr.Row():
|
137 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
138 |
+
negative_prompt = gr.Text(
|
139 |
+
label="Negative prompt",
|
140 |
+
max_lines=5,
|
141 |
+
lines=4,
|
142 |
+
placeholder="Enter a negative prompt",
|
143 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
144 |
+
visible=True,
|
145 |
+
)
|
146 |
+
seed = gr.Slider(
|
147 |
+
label="Seed",
|
148 |
+
minimum=0,
|
149 |
+
maximum=MAX_SEED,
|
150 |
+
step=1,
|
151 |
+
value=0,
|
152 |
+
)
|
153 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
154 |
+
with gr.Row(visible=True):
|
155 |
+
width = gr.Slider(
|
156 |
+
label="Width",
|
157 |
+
minimum=512,
|
158 |
+
maximum=MAX_IMAGE_SIZE,
|
159 |
+
step=64,
|
160 |
+
value=1024,
|
161 |
+
)
|
162 |
+
height = gr.Slider(
|
163 |
+
label="Height",
|
164 |
+
minimum=512,
|
165 |
+
maximum=MAX_IMAGE_SIZE,
|
166 |
+
step=64,
|
167 |
+
value=1024,
|
168 |
+
)
|
169 |
+
with gr.Row():
|
170 |
+
guidance_scale = gr.Slider(
|
171 |
+
label="Guidance Scale",
|
172 |
+
minimum=0.1,
|
173 |
+
maximum=6,
|
174 |
+
step=0.1,
|
175 |
+
value=3.0,
|
176 |
+
)
|
177 |
+
num_inference_steps = gr.Slider(
|
178 |
+
label="Number of inference steps",
|
179 |
+
minimum=1,
|
180 |
+
maximum=25,
|
181 |
+
step=1,
|
182 |
+
value=23,
|
183 |
+
)
|
184 |
+
|
185 |
+
gr.Examples(
|
186 |
+
examples=examples,
|
187 |
+
inputs=prompt,
|
188 |
+
cache_examples=False
|
189 |
+
)
|
190 |
+
|
191 |
+
use_negative_prompt.change(
|
192 |
+
fn=lambda x: gr.update(visible=x),
|
193 |
+
inputs=use_negative_prompt,
|
194 |
+
outputs=negative_prompt,
|
195 |
+
api_name=False,
|
196 |
+
)
|
197 |
+
|
198 |
+
gr.on(
|
199 |
+
triggers=[
|
200 |
+
prompt.submit,
|
201 |
+
negative_prompt.submit,
|
202 |
+
run_button.click,
|
203 |
+
],
|
204 |
+
fn=generate,
|
205 |
+
inputs=[
|
206 |
+
prompt,
|
207 |
+
negative_prompt,
|
208 |
+
use_negative_prompt,
|
209 |
+
seed,
|
210 |
+
width,
|
211 |
+
height,
|
212 |
+
guidance_scale,
|
213 |
+
num_inference_steps,
|
214 |
+
randomize_seed,
|
215 |
+
num_images
|
216 |
+
],
|
217 |
+
outputs=[result, seed],
|
218 |
+
api_name="run",
|
219 |
+
)
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
demo.queue(max_size=40).launch()
|