marigold-lcm / app.py
cbensimon's picture
cbensimon HF staff
ZeroGPU
6cdea50 verified
raw
history blame
31.8 kB
import functools
import os
import shutil
import zipfile
from io import BytesIO
import spaces
import gradio as gr
import imageio as imageio
import numpy as np
import torch as torch
from PIL import Image
from diffusers import UNet2DConditionModel, LCMScheduler
from gradio_imageslider import ImageSlider
from huggingface_hub import login
from tqdm import tqdm
from extrude import extrude_depth_3d
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline
default_seed = 2024
default_image_denoise_steps = 4
default_image_ensemble_size = 1
default_image_processing_res = 768
default_image_reproducuble = True
default_video_depth_latent_init_strength = 0.1
default_video_denoise_steps = 1
default_video_ensemble_size = 1
default_video_processing_res = 768
default_video_out_fps = 15
default_video_out_max_frames = 100
default_bas_plane_near = 0.0
default_bas_plane_far = 1.0
default_bas_embossing = 20
default_bas_denoise_steps = 4
default_bas_ensemble_size = 1
default_bas_processing_res = 768
default_bas_size_longest_px = 512
default_bas_size_longest_cm = 10
default_bas_filter_size = 3
default_bas_frame_thickness = 5
default_bas_frame_near = 1
default_bas_frame_far = 1
def process_image(
pipe,
path_input,
denoise_steps=default_image_denoise_steps,
ensemble_size=default_image_ensemble_size,
processing_res=default_image_processing_res,
reproducible=default_image_reproducuble,
):
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
seed=default_seed if reproducible else None,
show_progress_bar=False,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def process_video(
pipe,
path_input,
depth_latent_init_strength=default_video_depth_latent_init_strength,
denoise_steps=default_video_denoise_steps,
ensemble_size=default_video_ensemble_size,
processing_res=default_video_processing_res,
out_fps=default_video_out_fps,
out_max_frames=default_video_out_max_frames,
progress=gr.Progress(),
):
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
reader = imageio.get_reader(path_input)
meta_data = reader.get_meta_data()
fps = meta_data["fps"]
size = meta_data["size"]
duration_sec = meta_data["duration"]
if fps <= out_fps:
frame_interval, out_fps = 1, fps
else:
frame_interval = round(fps / out_fps)
out_fps = fps / frame_interval
out_duration_sec = out_max_frames / out_fps
if duration_sec > out_duration_sec:
gr.Warning(
f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
f"use alternative setups for full processing"
)
writer = imageio.get_writer(path_out_vis, fps=out_fps)
zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
prev_depth_latent = None
pbar = tqdm(desc="Processing Video", total=out_max_frames)
out_frame_id = 0
for frame_id, frame in enumerate(reader):
if not (frame_id % frame_interval == 0):
continue
out_frame_id += 1
pbar.update(1)
if out_frame_id > out_max_frames:
break
frame_pil = Image.fromarray(frame)
pipe_out = pipe(
frame_pil,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
match_input_res=False,
batch_size=0,
depth_latent_init=prev_depth_latent,
depth_latent_init_strength=depth_latent_init_strength,
seed=default_seed,
show_progress_bar=False,
)
prev_depth_latent = pipe_out.depth_latent
processed_frame = pipe_out.depth_colored
processed_frame = imageio.core.util.Array(np.array(processed_frame))
writer.append_data(processed_frame)
processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype(
np.uint16
)
processed_frame = Image.fromarray(processed_frame, mode="I;16")
archive_path = os.path.join(
f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png"
)
img_byte_arr = BytesIO()
processed_frame.save(img_byte_arr, format="png")
img_byte_arr.seek(0)
zipf.writestr(archive_path, img_byte_arr.read())
reader.close()
writer.close()
zipf.close()
return (
path_out_vis,
[path_out_vis, path_out_16bit],
)
def process_bas(
pipe,
path_input,
plane_near=default_bas_plane_near,
plane_far=default_bas_plane_far,
embossing=default_bas_embossing,
denoise_steps=default_bas_denoise_steps,
ensemble_size=default_bas_ensemble_size,
processing_res=default_bas_processing_res,
size_longest_px=default_bas_size_longest_px,
size_longest_cm=default_bas_size_longest_cm,
filter_size=default_bas_filter_size,
frame_thickness=default_bas_frame_thickness,
frame_near=default_bas_frame_near,
frame_far=default_bas_frame_far,
):
if plane_near >= plane_far:
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
seed=default_seed,
show_progress_bar=False,
)
depth_pred = pipe_out.depth_np * 65535
def _process_3d(
size_longest_px,
filter_size,
vertex_colors,
scene_lights,
output_model_scale=None,
prepare_for_3d_printing=False,
):
image_rgb_w, image_rgb_h = input_image.width, input_image.height
image_rgb_d = max(image_rgb_w, image_rgb_h)
image_new_w = size_longest_px * image_rgb_w // image_rgb_d
image_new_h = size_longest_px * image_rgb_h // image_rgb_d
image_rgb_new = os.path.join(
path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}"
)
image_depth_new = os.path.join(
path_output_dir, f"{name_base}_depth_{size_longest_px}.png"
)
input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save(
image_rgb_new
)
Image.fromarray(depth_pred).convert(mode="F").resize(
(image_new_w, image_new_h), Image.BILINEAR
).convert("I").save(image_depth_new)
path_glb, path_stl = extrude_depth_3d(
image_rgb_new,
image_depth_new,
output_model_scale=size_longest_cm * 10
if output_model_scale is None
else output_model_scale,
filter_size=filter_size,
coef_near=plane_near,
coef_far=plane_far,
emboss=embossing / 100,
f_thic=frame_thickness / 100,
f_near=frame_near / 100,
f_back=frame_far / 100,
vertex_colors=vertex_colors,
scene_lights=scene_lights,
prepare_for_3d_printing=prepare_for_3d_printing,
)
return path_glb, path_stl
path_viewer_glb, _ = _process_3d(
256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
)
path_files_glb, path_files_stl = _process_3d(
size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True
)
return path_viewer_glb, [path_files_glb, path_files_stl]
def run_demo_server(pipe):
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
process_pipe_video = spaces.GPU(functools.partial(process_video, pipe))
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="Marigold-LCM Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Marigold-LCM Depth Estimation</h1>
<p align="center">
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<p align="justify">
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>.
Upload your content into the <b>left</b> side, or click any of the <b>examples</b> below.
Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>right</b> side.
To avoid queuing, fork the demo into your profile.
</p>
"""
)
with gr.Tabs(elem_classes=["tabs"]):
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
image_submit_btn = gr.Button(
value="Compute Depth", variant="primary"
)
image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=4,
step=1,
value=default_image_denoise_steps,
)
image_ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=10,
step=1,
value=default_image_ensemble_size,
)
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
image_output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
image_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_image,
examples=[
os.path.join("files", "image", name)
for name in [
"arc.jpeg",
"berries.jpeg",
"butterfly.jpeg",
"cat.jpg",
"concert.jpeg",
"dog.jpeg",
"doughnuts.jpeg",
"einstein.jpg",
"food.jpeg",
"glasses.jpeg",
"house.jpg",
"lake.jpeg",
"marigold.jpeg",
"portrait_1.jpeg",
"portrait_2.jpeg",
"pumpkins.jpg",
"puzzle.jpeg",
"road.jpg",
"scientists.jpg",
"surfboards.jpeg",
"surfer.jpeg",
"swings.jpg",
"switzerland.jpeg",
"teamwork.jpeg",
"wave.jpeg",
]
],
inputs=[image_input],
outputs=[image_output_slider, image_output_files],
cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video",
sources=["upload"],
)
with gr.Row():
video_submit_btn = gr.Button(
value="Compute Depth", variant="primary"
)
video_reset_btn = gr.Button(value="Reset")
with gr.Column():
video_output_video = gr.Video(
label="Output video depth (red-near, blue-far)",
interactive=False,
)
video_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_video,
examples=[
os.path.join("files", "video", name)
for name in [
"cab.mp4",
"elephant.mp4",
"obama.mp4",
]
],
inputs=[video_input],
outputs=[video_output_video, video_output_files],
cache_examples=True,
)
with gr.Tab("Bas-relief (3D)"):
gr.Markdown(
"""
<p align="justify">
This part of the demo uses Marigold-LCM to create a bas-relief model.
The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
Start by uploading the image and click "Create" with the default parameters.
To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.
</p>
""",
)
with gr.Row():
with gr.Column():
bas_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
bas_clear_btn = gr.Button(value="Clear")
bas_reset_btn = gr.Button(value="Reset")
with gr.Accordion("3D printing demo: Main options", open=True):
bas_plane_near = gr.Slider(
label="Relative position of the near plane (between 0 and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=default_bas_plane_near,
)
bas_plane_far = gr.Slider(
label="Relative position of the far plane (between near and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=default_bas_plane_far,
)
bas_embossing = gr.Slider(
label="Embossing level",
minimum=0,
maximum=100,
step=1,
value=default_bas_embossing,
)
with gr.Accordion("3D printing demo: Advanced options", open=False):
bas_denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=4,
step=1,
value=default_bas_denoise_steps,
)
bas_ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=10,
step=1,
value=default_bas_ensemble_size,
)
bas_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_bas_processing_res,
)
bas_size_longest_px = gr.Slider(
label="Size (px) of the longest side",
minimum=256,
maximum=1024,
step=256,
value=default_bas_size_longest_px,
)
bas_size_longest_cm = gr.Slider(
label="Size (cm) of the longest side",
minimum=1,
maximum=100,
step=1,
value=default_bas_size_longest_cm,
)
bas_filter_size = gr.Slider(
label="Size (px) of the smoothing filter",
minimum=1,
maximum=5,
step=2,
value=default_bas_filter_size,
)
bas_frame_thickness = gr.Slider(
label="Frame thickness",
minimum=0,
maximum=100,
step=1,
value=default_bas_frame_thickness,
)
bas_frame_near = gr.Slider(
label="Frame's near plane offset",
minimum=-100,
maximum=100,
step=1,
value=default_bas_frame_near,
)
bas_frame_far = gr.Slider(
label="Frame's far plane offset",
minimum=1,
maximum=10,
step=1,
value=default_bas_frame_far,
)
with gr.Column():
bas_output_viewer = gr.Model3D(
camera_position=(75.0, 90.0, 1.25),
elem_classes="viewport",
label="3D preview (low-res, relief highlight)",
interactive=False,
)
bas_output_files = gr.Files(
label="3D model outputs (high-res)",
elem_id="download",
interactive=False,
)
gr.Examples(
fn=process_pipe_bas,
examples=[
[
"files/basrelief/coin.jpg", # input
0.0, # plane_near
0.66, # plane_far
15, # embossing
4, # denoise_steps
4, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
0, # frame_near
1, # frame_far
],
[
"files/basrelief/einstein.jpg", # input
0.0, # plane_near
0.5, # plane_far
50, # embossing
2, # denoise_steps
1, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
-15, # frame_near
1, # frame_far
],
[
"files/basrelief/food.jpeg", # input
0.0, # plane_near
1.0, # plane_far
20, # embossing
2, # denoise_steps
4, # ensemble_size
768, # processing_res
512, # size_longest_px
10, # size_longest_cm
3, # filter_size
5, # frame_thickness
-5, # frame_near
1, # frame_far
],
],
inputs=[
bas_input,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
outputs=[bas_output_viewer, bas_output_files],
cache_examples=True,
)
image_submit_btn.click(
fn=process_pipe_image,
inputs=[
image_input,
image_denoise_steps,
image_ensemble_size,
image_processing_res,
],
outputs=[image_output_slider, image_output_files],
concurrency_limit=1,
)
image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_ensemble_size,
default_image_denoise_steps,
default_image_processing_res,
),
inputs=[],
outputs=[
image_input,
image_output_slider,
image_output_files,
image_ensemble_size,
image_denoise_steps,
image_processing_res,
],
concurrency_limit=1,
)
video_submit_btn.click(
fn=process_pipe_video,
inputs=[video_input],
outputs=[video_output_video, video_output_files],
concurrency_limit=1,
)
video_reset_btn.click(
fn=lambda: (None, None, None),
inputs=[],
outputs=[video_input, video_output_video, video_output_files],
concurrency_limit=1,
)
def wrapper_process_pipe_bas(*args, **kwargs):
out = list(process_pipe_bas(*args, **kwargs))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
bas_submit_btn.click(
fn=wrapper_process_pipe_bas,
inputs=[
bas_input,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files],
concurrency_limit=1,
)
bas_clear_btn.click(
fn=lambda: (gr.Button(interactive=True), None, None),
inputs=[],
outputs=[
bas_submit_btn,
bas_output_viewer,
bas_output_files,
],
concurrency_limit=1,
)
bas_reset_btn.click(
fn=lambda: (
gr.Button(interactive=True),
None,
None,
None,
default_bas_plane_near,
default_bas_plane_far,
default_bas_embossing,
default_bas_denoise_steps,
default_bas_ensemble_size,
default_bas_processing_res,
default_bas_size_longest_px,
default_bas_size_longest_cm,
default_bas_filter_size,
default_bas_frame_thickness,
default_bas_frame_near,
default_bas_frame_far,
),
inputs=[],
outputs=[
bas_submit_btn,
bas_input,
bas_output_viewer,
bas_output_files,
bas_plane_near,
bas_plane_far,
bas_embossing,
bas_denoise_steps,
bas_ensemble_size,
bas_processing_res,
bas_size_longest_px,
bas_size_longest_cm,
bas_filter_size,
bas_frame_thickness,
bas_frame_near,
bas_frame_far,
],
concurrency_limit=1,
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def prefetch_hf_cache(pipe):
process_image(pipe, "files/image/bee.jpg", 1, 1, 64)
shutil.rmtree("files/image/bee_output")
def main():
CHECKPOINT = "prs-eth/marigold-v1-0"
CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0"
if "HF_TOKEN_LOGIN" in os.environ:
login(token=os.environ["HF_TOKEN_LOGIN"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = MarigoldDepthConsistencyPipeline.from_pretrained(
CHECKPOINT,
unet=UNet2DConditionModel.from_pretrained(
CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True
),
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
prefetch_hf_cache(pipe)
run_demo_server(pipe)
if __name__ == "__main__":
main()