Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
""" | |
utils.py - Utility functions for the project. | |
""" | |
import re | |
from pathlib import Path | |
from datetime import datetime | |
from natsort import natsorted | |
import subprocess | |
def get_timestamp() -> str: | |
""" | |
get_timestamp - get a timestamp for the current time | |
Returns: | |
str, the timestamp | |
""" | |
return datetime.now().strftime("%Y%m%d_%H%M%S") | |
def truncate_word_count(text, max_words=512): | |
""" | |
truncate_word_count - a helper function for the gradio module | |
Parameters | |
---------- | |
text : str, required, the text to be processed | |
max_words : int, optional, the maximum number of words, default=512 | |
Returns | |
------- | |
dict, the text and whether it was truncated | |
""" | |
# split on whitespace with regex | |
words = re.split(r"\s+", text) | |
processed = {} | |
if len(words) > max_words: | |
processed["was_truncated"] = True | |
processed["truncated_text"] = " ".join(words[:max_words]) | |
else: | |
processed["was_truncated"] = False | |
processed["truncated_text"] = text | |
return processed | |
def load_examples(src, filetypes=[".txt", ".pdf"]): | |
""" | |
load_examples - a helper function for the gradio module to load examples | |
Returns: | |
list of str, the examples | |
""" | |
src = Path(src) | |
src.mkdir(exist_ok=True) | |
pdf_url = ( | |
"https://www.dropbox.com/s/y92xy7o5qb88yij/all_you_need_is_attention.pdf?dl=1" | |
) | |
subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"]) | |
examples = [f for f in src.iterdir() if f.suffix in filetypes] | |
examples = natsorted(examples) | |
# load the examples into a list | |
text_examples = [] | |
for example in examples: | |
with open(example, "r") as f: | |
text = f.read() | |
text_examples.append([text, "base", 2, 1024, 0.7, 3.5, 3]) | |
return text_examples | |
def load_example_filenames(example_path: str or Path): | |
""" | |
load_example_filenames - a helper function for the gradio module to load examples | |
Returns: | |
dict, the examples (filename:full path) | |
""" | |
example_path = Path(example_path) | |
# load the examples into a list | |
examples = {f.name: f for f in example_path.glob("*.txt")} | |
return examples | |
def saves_summary(summarize_output, outpath: str or Path = None, add_signature=True): | |
""" | |
saves_summary - save the summary generated from summarize_via_tokenbatches() to a text file | |
_summaries = summarize_via_tokenbatches( | |
text, | |
batch_length=token_batch_length, | |
batch_stride=batch_stride, | |
**settings, | |
) | |
""" | |
outpath = ( | |
Path.cwd() / f"document_summary_{get_timestamp()}.txt" | |
if outpath is None | |
else Path(outpath) | |
) | |
sum_text = [s["summary"][0] for s in summarize_output] | |
sum_scores = [f"\n - {round(s['summary_score'],4)}" for s in summarize_output] | |
scores_text = "\n".join(sum_scores) | |
full_summary = "\n\t".join(sum_text) | |
with open( | |
outpath, | |
"w", | |
) as fo: | |
if add_signature: | |
fo.write( | |
"Generated with the Document Summarization space :) https://hf.co/spaces/pszemraj/document-summarization\n\n" | |
) | |
fo.writelines(full_summary) | |
with open( | |
outpath, | |
"a", | |
) as fo: | |
fo.write("\n" * 3) | |
fo.write(f"\n\nSection Scores:\n") | |
fo.writelines(scores_text) | |
fo.write("\n\n---\n") | |
return outpath | |