Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π docstrings
Browse filesSigned-off-by: peter szemraj <[email protected]>
app.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import contextlib
|
2 |
import logging
|
3 |
import os
|
@@ -19,7 +25,6 @@ import gradio as gr
|
|
19 |
import nltk
|
20 |
import torch
|
21 |
from cleantext import clean
|
22 |
-
from doctr.io import DocumentFile
|
23 |
from doctr.models import ocr_predictor
|
24 |
|
25 |
from pdf2text import convert_PDF_to_Text
|
@@ -28,7 +33,7 @@ from utils import load_example_filenames, saves_summary, truncate_word_count
|
|
28 |
|
29 |
_here = Path(__file__).parent
|
30 |
|
31 |
-
nltk.download("stopwords"
|
32 |
|
33 |
|
34 |
MODEL_OPTIONS = [
|
@@ -37,7 +42,7 @@ MODEL_OPTIONS = [
|
|
37 |
"pszemraj/long-t5-tglobal-base-sci-simplify-elife",
|
38 |
"pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
|
39 |
"pszemraj/pegasus-x-large-book-summary",
|
40 |
-
]
|
41 |
|
42 |
|
43 |
def predict(
|
@@ -46,8 +51,16 @@ def predict(
|
|
46 |
token_batch_length: int = 1024,
|
47 |
empty_cache: bool = True,
|
48 |
**settings,
|
49 |
-
):
|
50 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if torch.cuda.is_available() and empty_cache:
|
52 |
torch.cuda.empty_cache()
|
53 |
|
@@ -143,9 +156,11 @@ def proc_submission(
|
|
143 |
token_batch_length=token_batch_length,
|
144 |
**settings,
|
145 |
)
|
146 |
-
sum_text = [
|
|
|
|
|
147 |
sum_scores = [
|
148 |
-
f" -
|
149 |
for i, s in enumerate(_summaries)
|
150 |
]
|
151 |
|
@@ -153,9 +168,9 @@ def proc_submission(
|
|
153 |
history["Summary Scores"] = "<br><br>"
|
154 |
scores_out = "\n".join(sum_scores)
|
155 |
rt = round((time.perf_counter() - st) / 60, 2)
|
156 |
-
|
157 |
html = ""
|
158 |
-
html += f"<p>Runtime: {rt} minutes
|
159 |
if msg is not None:
|
160 |
html += msg
|
161 |
|
@@ -170,11 +185,13 @@ def proc_submission(
|
|
170 |
def load_single_example_text(
|
171 |
example_path: str or Path,
|
172 |
max_pages=20,
|
173 |
-
):
|
174 |
"""
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
"""
|
179 |
global name_to_path
|
180 |
full_ex_path = name_to_path[example_path]
|
@@ -198,30 +215,27 @@ def load_single_example_text(
|
|
198 |
return text
|
199 |
|
200 |
|
201 |
-
def load_uploaded_file(file_obj, max_pages=20):
|
202 |
"""
|
203 |
-
load_uploaded_file -
|
204 |
-
|
205 |
-
Args:
|
206 |
-
file_obj (POTENTIALLY list): Gradio file object inside a list
|
207 |
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
"""
|
211 |
-
|
212 |
-
# file_path = Path(file_obj[0].name)
|
213 |
-
|
214 |
# check if mysterious file object is a list
|
215 |
if isinstance(file_obj, list):
|
216 |
file_obj = file_obj[0]
|
217 |
file_path = Path(file_obj.name)
|
218 |
try:
|
|
|
219 |
if file_path.suffix == ".txt":
|
220 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
221 |
raw_text = f.read()
|
222 |
-
text = clean(raw_text, lower=
|
223 |
elif file_path.suffix == ".pdf":
|
224 |
-
logging.info(f"
|
225 |
conversion_stats = convert_PDF_to_Text(
|
226 |
file_path,
|
227 |
ocr_model=ocr_model,
|
@@ -230,11 +244,11 @@ def load_uploaded_file(file_obj, max_pages=20):
|
|
230 |
text = conversion_stats["converted_text"]
|
231 |
else:
|
232 |
logging.error(f"Unknown file type {file_path.suffix}")
|
233 |
-
text = "ERROR - check
|
234 |
|
235 |
return text
|
236 |
except Exception as e:
|
237 |
-
logging.
|
238 |
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
|
239 |
|
240 |
|
|
|
1 |
+
"""
|
2 |
+
app.py - the main module for the gradio app
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
python app.py
|
6 |
+
"""
|
7 |
import contextlib
|
8 |
import logging
|
9 |
import os
|
|
|
25 |
import nltk
|
26 |
import torch
|
27 |
from cleantext import clean
|
|
|
28 |
from doctr.models import ocr_predictor
|
29 |
|
30 |
from pdf2text import convert_PDF_to_Text
|
|
|
33 |
|
34 |
_here = Path(__file__).parent
|
35 |
|
36 |
+
nltk.download("stopwords", quiet=True)
|
37 |
|
38 |
|
39 |
MODEL_OPTIONS = [
|
|
|
42 |
"pszemraj/long-t5-tglobal-base-sci-simplify-elife",
|
43 |
"pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
|
44 |
"pszemraj/pegasus-x-large-book-summary",
|
45 |
+
] # models users can choose from
|
46 |
|
47 |
|
48 |
def predict(
|
|
|
51 |
token_batch_length: int = 1024,
|
52 |
empty_cache: bool = True,
|
53 |
**settings,
|
54 |
+
) -> list:
|
55 |
+
"""
|
56 |
+
predict - helper fn to support multiple models for summarization at once
|
57 |
+
|
58 |
+
:param str input_text: the input text to summarize
|
59 |
+
:param str model_name: model name to use
|
60 |
+
:param int token_batch_length: the length of the token batches to use
|
61 |
+
:param bool empty_cache: whether to empty the cache before loading a new= model
|
62 |
+
:return: list of dicts with keys "summary" and "score"
|
63 |
+
"""
|
64 |
if torch.cuda.is_available() and empty_cache:
|
65 |
torch.cuda.empty_cache()
|
66 |
|
|
|
156 |
token_batch_length=token_batch_length,
|
157 |
**settings,
|
158 |
)
|
159 |
+
sum_text = [
|
160 |
+
f"Batch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
|
161 |
+
]
|
162 |
sum_scores = [
|
163 |
+
f" - Batch Summary {i}: {round(s['summary_score'],4)}"
|
164 |
for i, s in enumerate(_summaries)
|
165 |
]
|
166 |
|
|
|
168 |
history["Summary Scores"] = "<br><br>"
|
169 |
scores_out = "\n".join(sum_scores)
|
170 |
rt = round((time.perf_counter() - st) / 60, 2)
|
171 |
+
logging.info(f"Runtime: {rt} minutes")
|
172 |
html = ""
|
173 |
+
html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>"
|
174 |
if msg is not None:
|
175 |
html += msg
|
176 |
|
|
|
185 |
def load_single_example_text(
|
186 |
example_path: str or Path,
|
187 |
max_pages=20,
|
188 |
+
) -> str:
|
189 |
"""
|
190 |
+
load_single_example_text - loads a single example text file
|
191 |
+
|
192 |
+
:param strorPath example_path: name of the example to load
|
193 |
+
:param int max_pages: the maximum number of pages to load from a PDF
|
194 |
+
:return str: the text of the example
|
195 |
"""
|
196 |
global name_to_path
|
197 |
full_ex_path = name_to_path[example_path]
|
|
|
215 |
return text
|
216 |
|
217 |
|
218 |
+
def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str:
|
219 |
"""
|
220 |
+
load_uploaded_file - loads a file uploaded by the user
|
|
|
|
|
|
|
221 |
|
222 |
+
:param file_obj (POTENTIALLY list): Gradio file object inside a list
|
223 |
+
:param int max_pages: the maximum number of pages to load from a PDF
|
224 |
+
:param bool lower: whether to lowercase the text
|
225 |
+
:return str: the text of the file
|
226 |
"""
|
|
|
|
|
|
|
227 |
# check if mysterious file object is a list
|
228 |
if isinstance(file_obj, list):
|
229 |
file_obj = file_obj[0]
|
230 |
file_path = Path(file_obj.name)
|
231 |
try:
|
232 |
+
logging.info(f"Loading file:\t{file_path}")
|
233 |
if file_path.suffix == ".txt":
|
234 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
235 |
raw_text = f.read()
|
236 |
+
text = clean(raw_text, lower=lower)
|
237 |
elif file_path.suffix == ".pdf":
|
238 |
+
logging.info(f"loading as PDF file {file_path}")
|
239 |
conversion_stats = convert_PDF_to_Text(
|
240 |
file_path,
|
241 |
ocr_model=ocr_model,
|
|
|
244 |
text = conversion_stats["converted_text"]
|
245 |
else:
|
246 |
logging.error(f"Unknown file type {file_path.suffix}")
|
247 |
+
text = "ERROR - check file - unknown file type"
|
248 |
|
249 |
return text
|
250 |
except Exception as e:
|
251 |
+
logging.error(f"Trying to load file:\t{file_path},\nerror:\t{e}")
|
252 |
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
|
253 |
|
254 |
|