Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import spacy | |
class ModelSingleton: | |
_instance = None | |
def __new__(cls, *args, **kwargs): | |
if not cls._instance: | |
cls._instance = super(ModelSingleton, cls).__new__(cls, *args, **kwargs) | |
return cls._instance | |
def __init__(self): | |
if not hasattr(self, 'initialized'): | |
self.nlp_en = spacy.load("en_core_web_sm") | |
self.nlp_it = spacy.load("it_core_news_sm") | |
# Load translation models and tokenizers | |
self.tokenizer_en_it = AutoTokenizer.from_pretrained("puettmann/Foglietta-mt-en-it") | |
self.model_en_it = AutoModelForSeq2SeqLM.from_pretrained("puettmann/Foglietta-mt-en-it", torch_dtype=torch.bfloat16) | |
self.tokenizer_it_en = AutoTokenizer.from_pretrained("puettmann/Foglietta-mt-it-en") | |
self.model_it_en = AutoModelForSeq2SeqLM.from_pretrained("puettmann/Foglietta-mt-it-en", torch_dtype=torch.bfloat16) | |
self.initialized = True | |
model_singleton = ModelSingleton() | |
def generate_response_en_it(input_text): | |
input_ids = model_singleton.tokenizer_en_it("translate English to Italian: " + input_text, return_tensors="pt").input_ids | |
output = model_singleton.model_en_it.generate(input_ids, max_new_tokens=256) | |
return model_singleton.tokenizer_en_it.decode(output[0], skip_special_tokens=True) | |
def generate_response_it_en(input_text): | |
input_ids = model_singleton.tokenizer_it_en("translate Italian to English: " + input_text, return_tensors="pt").input_ids | |
output = model_singleton.model_it_en.generate(input_ids, max_new_tokens=256) | |
return model_singleton.tokenizer_it_en.decode(output[0], skip_special_tokens=True) | |
def translate_text(input_text, direction): | |
if direction == "en-it": | |
nlp = model_singleton.nlp_en | |
generate_response = generate_response_en_it | |
elif direction == "it-en": | |
nlp = model_singleton.nlp_it | |
generate_response = generate_response_it_en | |
else: | |
return "Invalid direction selected." | |
doc = nlp(input_text) | |
sentences = [sent.text for sent in doc.sents] | |
sentence_translations = [] | |
for sentence in sentences: | |
sentence_translation = generate_response(sentence) | |
sentence_translations.append(sentence_translation) | |
full_translation = " ".join(sentence_translations) | |
return full_translation | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=translate_text, | |
inputs=[gr.Textbox(lines=5, placeholder="Enter text to translate...", label="Input Text"), | |
gr.Dropdown(choices=["en-it", "it-en"], label="Translation Direction")], | |
outputs=gr.Textbox(lines=5, label="Translation"), | |
description="Translation using the super small Foglietta models. Initilization might take a couple of seconds the first time. This spaces uses the Foglietta models for it-en and en-it text translation tasks." | |
) | |
# Launch the interface | |
iface.launch() | |