File size: 6,488 Bytes
fcbf0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47e966
45c01a3
 
 
f47e966
fcbf0a3
 
 
 
 
 
 
 
 
 
f47e966
 
fcbf0a3
 
 
 
 
8e7b765
fcbf0a3
 
45c01a3
fcbf0a3
7368058
 
fcbf0a3
b27f6f9
fcbf0a3
 
a974aa2
 
fcbf0a3
 
 
 
 
 
a974aa2
fcbf0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c01a3
 
d87ba50
 
45c01a3
 
 
fcbf0a3
 
45c01a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcbf0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ba032
ef408d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b062dd3
17d42ff
b062dd3
 
 
 
 
 
 
 
 
 
e498fb7
 
 
17d42ff
 
b062dd3
 
 
 
 
ef408d7
 
 
 
 
fcbf0a3
 
 
 
 
 
69c11c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from langchain_core.messages import BaseMessage, HumanMessage, trim_messages
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
from typing import Optional
import json
from sse_starlette.sse import EventSourceResponse
import io
import sys
from contextlib import redirect_stdout, redirect_stderr
from langchain_core.runnables import RunnableConfig
import requests
import uvicorn
import re
from fastapi.staticfiles import StaticFiles
from langchain_core.runnables import RunnableConfig
from langchain_core.prompts import ChatPromptTemplate
from datetime import datetime

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

app.mount("/chatui", StaticFiles(directory="static/chatui", html=True), name="index")

class CodeExecutionResult:
    def __init__(self, output: str, error: str = None):
        self.output = output
        self.error = error

API_URL = "https://pvanand-code-execution-files-v41.hf.space"

@tool
def execute_python(code: str, config: RunnableConfig):
    """Execute Python code in an IPython interactiveshell and return the output.
       The returned artifacts (if present) are automatically rendered in the UI and visible to the user.
       Available Libraries: plotly (default charting library),pandas,yfinance,numpy,geopandas,folium
    Args:
        code: Valid Python code with correct indentation and syntax including necessary imports.
    """

    thread_config = config.get("configurable", {})
    session_token = thread_config.get("thread_id", "test")

    headers = {
        'accept': 'application/json',
        'Content-Type': 'application/json'
    }
    data = {
        "session_token": session_token,
        "code": code
    }
    response = requests.post(
        f'{API_URL}/v0/execute',
        headers=headers,
        data=json.dumps(data)
    )

    if response.status_code != 200:
        return f"Error: Request failed with status code {response.status_code}. Response: {response.text}"
    else:
        response_json = response.json()
        return f"data: {json.dumps(response_json)} \ndata:"

memory = MemorySaver()
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
prompt = ChatPromptTemplate.from_messages([
    ("system", f"You are a Data Visualization assistant.You have access to a jupyter client with access to internet for python code execution.\
    Your taks is to assist users with your data analysis and visualization expertise. Use Plotly for creating visualizations. Generated artifacts\
    are automatically rendered in the UI. Today's date is \
    {datetime.now().strftime('%Y-%m-%d')}. The current folder contains the following files: {{collection_files}}"),
    ("placeholder", "{messages}"),
])

def state_modifier(state) -> list[BaseMessage]:
    collection_files = "None"
    try:
        formatted_prompt = prompt.invoke({
            "collection_files": collection_files,
            "messages": state["messages"]
        })
        print(state["messages"])
        return trim_messages(
            formatted_prompt,
            token_counter=len,
            max_tokens=16000,
            strategy="last",
            start_on="human",
            include_system=True,
            allow_partial=False,
        )
        
    except Exception as e:
        print(f"Error in state modifier: {str(e)}")
        return state["messages"]

# Create the agent with the Python execution tool
agent = create_react_agent(
    model,
    tools=[execute_python],
    checkpointer=memory,
    state_modifier=state_modifier,
)

class ChatInput(BaseModel):
    message: str
    thread_id: Optional[str] = None

@app.post("/chat")
async def chat(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}\n"

            elif kind == "on_tool_start":
                tool_input = event['data'].get('input', '')
                yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
            
            elif kind == "on_tool_end":
                tool_output = event['data'].get('output', '').content
                print(type(tool_output))
                #print(dir(tool_output))
                #print the keys
                pattern = r'data: (.*?)\ndata:'
                match = re.search(pattern, tool_output)
                print(tool_output)

                if match:
                    tool_output_json = match.group(1).strip()
                    try:
                        tool_output = json.loads(tool_output_json)
                        if "artifacts" in tool_output:
                            for artifact in tool_output["artifacts"]:
                                artifact_content = requests.get(f"{API_URL}/artifact/{artifact['artifact_id']}").content
                                #print(artifact_content)
                                #tool_output["artifacts"][artifact["artifact_id"]] = artifact_content
                    except Exception as e:
                        print(e)
                        print("Error parsing tool output as json: ", tool_output)
                else:
                    print("No match found in tool output")  
                yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}\n"
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)