Spaces:
Running
Running
File size: 14,400 Bytes
5d42805 c182518 5d42805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from typing import List, Optional, Dict, Tuple
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
from utils import process_pdf_to_chunks
import hashlib
import uuid
import json
from datetime import datetime
from pydantic import BaseModel
import logging
# Create router
router = APIRouter(
prefix="/rag",
tags=["rag"]
)
# Initialize LanceDB and embedding model
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(
name="Snowflake/snowflake-arctic-embed-xs",
device="cpu"
)
def get_user_collection(user_id: str, collection_name: str) -> str:
"""Generate user-specific collection name"""
return f"{user_id}_{collection_name}"
class DocumentChunk(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
document_id: str
chunk_index: int
file_name: str
file_type: str
created_date: str
collection_id: str
user_id: str
metadata_json: str
char_start: int
char_end: int
page_numbers: List[int]
images: List[str]
class QueryInput(BaseModel):
collection_id: str
query: str
top_k: Optional[int] = 3
user_id: str
class SearchResult(BaseModel):
text: str
distance: float
metadata: Dict # Added metadata field
class SearchResponse(BaseModel):
results: List[SearchResult]
async def process_file(file: UploadFile, collection_id: str, user_id: str) -> Tuple[List[dict], str]:
"""Process single file and return chunks with metadata"""
content = await file.read()
file_type = file.filename.split('.')[-1].lower()
chunks = []
doc_id = ""
if file_type == 'pdf':
chunks, doc_id = process_pdf_to_chunks(
pdf_content=content,
file_name=file.filename
)
elif file_type == 'txt':
doc_id = hashlib.sha256(content).hexdigest()[:4]
text_content = content.decode('utf-8')
chunks = [{
"text": text_content,
"metadata": {
"created_date": datetime.now().isoformat(),
"file_name": file.filename,
"document_id": doc_id,
"user_id": user_id,
"location": {
"chunk_index": 0,
"char_start": 0,
"char_end": len(text_content),
"pages": [1],
"total_chunks": 1
},
"images": []
}
}]
return chunks, doc_id
@router.post("/upload_files")
async def upload_files(
files: List[UploadFile] = File(...),
collection_name: Optional[str] = Form(None),
user_id: str = Form(...)
):
try:
collection_id = get_user_collection(
user_id,
collection_name if collection_name else f"col_{uuid.uuid4().hex[:8]}"
)
all_chunks = []
doc_ids = {}
for file in files:
try:
chunks, doc_id = await process_file(file, collection_id, user_id)
for chunk in chunks:
chunk_data = {
"text": chunk["text"],
"document_id": chunk["metadata"]["document_id"],
"chunk_index": chunk["metadata"]["location"]["chunk_index"],
"file_name": chunk["metadata"]["file_name"],
"file_type": file.filename.split('.')[-1].lower(),
"created_date": chunk["metadata"]["created_date"],
"collection_id": collection_id,
"user_id": user_id,
"metadata_json": json.dumps(chunk["metadata"]),
"char_start": chunk["metadata"]["location"]["char_start"],
"char_end": chunk["metadata"]["location"]["char_end"],
"page_numbers": chunk["metadata"]["location"]["pages"],
"images": chunk["metadata"].get("images", [])
}
all_chunks.append(chunk_data)
doc_ids[doc_id] = file.filename
except Exception as e:
logging.error(f"Error processing file {file.filename}: {str(e)}")
raise HTTPException(
status_code=400,
detail=f"Error processing file {file.filename}: {str(e)}"
)
try:
table = db.open_table(collection_id)
except Exception as e:
logging.error(f"Error opening table: {str(e)}")
try:
table = db.create_table(
collection_id,
schema=DocumentChunk,
mode="create"
)
# Create FTS index on the text column for hybrid search support
# table.create_fts_index(
# field_names="text",
# replace=True,
# tokenizer_name="en_stem", # Use English stemming
# lower_case=True, # Convert text to lowercase
# remove_stop_words=True, # Remove common words like "the", "is", "at"
# writer_heap_size=1024 * 1024 * 1024 # 1GB heap size
# )
except Exception as e:
logging.error(f"Error creating table: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error creating database table: {str(e)}"
)
try:
df = pd.DataFrame(all_chunks)
table.add(data=df)
except Exception as e:
logging.error(f"Error adding data to table: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error adding data to database: {str(e)}"
)
return {
"message": f"Successfully processed {len(files)} files",
"collection_id": collection_id,
"total_chunks": len(all_chunks),
"user_id": user_id,
"document_ids": doc_ids
}
except HTTPException:
raise
except Exception as e:
logging.error(f"Unexpected error during file upload: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Unexpected error: {str(e)}"
)
@router.get("/get_document/{collection_id}/{document_id}")
async def get_document(
collection_id: str,
document_id: str,
user_id: str
):
try:
table = db.open_table(f"{user_id}_{collection_id}")
except Exception as e:
logging.error(f"Error opening table: {str(e)}")
raise HTTPException(
status_code=404,
detail=f"Collection not found: {str(e)}"
)
try:
chunks = table.to_pandas()
doc_chunks = chunks[
(chunks['document_id'] == document_id) &
(chunks['user_id'] == user_id)
].sort_values('chunk_index')
if len(doc_chunks) == 0:
raise HTTPException(
status_code=404,
detail=f"Document {document_id} not found in collection {collection_id}"
)
return {
"document_id": document_id,
"file_name": doc_chunks.iloc[0]['file_name'],
"chunks": [
{
"text": row['text'],
"metadata": json.loads(row['metadata_json'])
}
for _, row in doc_chunks.iterrows()
]
}
except HTTPException:
raise
except Exception as e:
logging.error(f"Error retrieving document: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error retrieving document: {str(e)}"
)
@router.post("/query_collection", response_model=SearchResponse)
async def query_collection(input_data: QueryInput):
try:
collection_id = get_user_collection(input_data.user_id, input_data.collection_id)
try:
table = db.open_table(collection_id)
except Exception as e:
logging.error(f"Error opening table: {str(e)}")
raise HTTPException(
status_code=404,
detail=f"Collection not found: {str(e)}"
)
try:
results = (
table.search(input_data.query)
.where(f"user_id = '{input_data.user_id}'")
.limit(input_data.top_k)
.to_list()
)
except Exception as e:
logging.error(f"Error searching collection: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error searching collection: {str(e)}"
)
return SearchResponse(results=[
SearchResult(
text=r['text'],
distance=float(r['_distance']),
metadata=json.loads(r['metadata_json'])
)
for r in results
])
except HTTPException:
raise
except Exception as e:
logging.error(f"Unexpected error during query: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Unexpected error: {str(e)}"
)
@router.get("/list_collections")
async def list_collections(user_id: str):
try:
all_collections = db.table_names()
user_collections = [
c for c in all_collections
if c.startswith(f"{user_id}_")
]
# Get documents for each collection
collections_info = []
for collection_name in user_collections:
try:
table = db.open_table(collection_name)
df = table.to_pandas()
# Group by document_id to get unique documents
documents = df.groupby('document_id').agg({
'file_name': 'first',
'created_date': 'first'
}).reset_index()
collections_info.append({
"collection_id": collection_name.replace(f"{user_id}_", ""),
"documents": [
{
"document_id": row['document_id'],
"file_name": row['file_name'],
"created_date": row['created_date']
}
for _, row in documents.iterrows()
]
})
except Exception as e:
logging.error(f"Error processing collection {collection_name}: {str(e)}")
continue
return {"collections": collections_info}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.delete("/delete_collection/{collection_id}")
async def delete_collection(collection_id: str, user_id: str):
try:
full_collection_id = f"{user_id}_{collection_id}"
# Check if collection exists
try:
table = db.open_table(full_collection_id)
except Exception as e:
logging.error(f"Collection not found: {str(e)}")
raise HTTPException(
status_code=404,
detail=f"Collection {collection_id} not found"
)
# Verify ownership
if not full_collection_id.startswith(f"{user_id}_"):
logging.error(f"Unauthorized deletion attempt for collection {collection_id} by user {user_id}")
raise HTTPException(
status_code=403,
detail="Not authorized to delete this collection"
)
try:
db.drop_table(full_collection_id)
except Exception as e:
logging.error(f"Error deleting collection {collection_id}: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error deleting collection: {str(e)}"
)
return {
"message": f"Collection {collection_id} deleted successfully",
"collection_id": collection_id
}
except HTTPException:
raise
except Exception as e:
logging.error(f"Unexpected error deleting collection {collection_id}: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Unexpected error: {str(e)}"
)
@router.post("/get_collection_files")
def get_collection_files(collection_id: str, user_id: str) -> str:
"""Get list of files in the specified collection"""
try:
# Get the full collection name
collection_name = f"{user_id}_{collection_id}"
# Open the table and convert to pandas
table = db.open_table(collection_name)
df = table.to_pandas()
logging.info(f"fetched chunks {str(df.head())}")
# Get unique file names
unique_files = df['file_name'].unique()
# Join the file names into a string
return ", ".join(unique_files)
except Exception as e:
logging.error(f"Error getting collection files: {str(e)}")
return f"Error getting files: {str(e)}"
@router.post("/query_collection_tool")
async def query_collection_tool(input_data: QueryInput):
try:
response = await query_collection(input_data)
results = []
# Access response directly since it's a Pydantic model
for r in response.results:
result_dict = {
"text": r.text,
"distance": r.distance,
"metadata": {
"document_id": r.metadata.get("document_id"),
"chunk_index": r.metadata.get("location", {}).get("chunk_index")
}
}
results.append(result_dict)
return str(results)
except Exception as e:
logging.error(f"Unexpected error during query: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Unexpected error: {str(e)}"
) |