Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,808 +1,205 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
|
2 |
-
from fastapi.security import APIKeyHeader
|
3 |
-
from fastapi.responses import StreamingResponse
|
4 |
-
from pydantic import BaseModel, Field
|
5 |
-
from typing import Literal, List, Dict
|
6 |
import os
|
7 |
-
|
8 |
-
|
9 |
-
from uuid import uuid4
|
10 |
-
import tiktoken
|
11 |
-
import sqlite3
|
12 |
-
import time
|
13 |
-
from datetime import datetime, timedelta
|
14 |
-
import asyncio
|
15 |
-
import requests
|
16 |
-
from prompts import *
|
17 |
-
from fastapi_cache import FastAPICache
|
18 |
-
from fastapi_cache.backends.inmemory import InMemoryBackend
|
19 |
-
from fastapi_cache.decorator import cache
|
20 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Configure logging
|
23 |
logging.basicConfig(
|
24 |
level=logging.INFO,
|
25 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
26 |
-
handlers=[
|
27 |
-
logging.FileHandler("app.log"),
|
28 |
-
logging.StreamHandler()
|
29 |
-
]
|
30 |
)
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
API_KEY_NAME = "X-API-Key"
|
36 |
-
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
|
37 |
-
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
|
38 |
-
|
39 |
-
from speech_api import router as speech_api_router
|
40 |
-
app.include_router(speech_api_router, prefix="/api/v1", tags=["TTS and ASR"])
|
41 |
-
|
42 |
-
ModelID = Literal[
|
43 |
-
"openai/gpt-4o-mini",
|
44 |
-
"meta-llama/llama-3-70b-instruct",
|
45 |
-
"anthropic/claude-3.5-sonnet",
|
46 |
-
"deepseek/deepseek-coder",
|
47 |
-
"anthropic/claude-3-haiku",
|
48 |
-
"openai/gpt-3.5-turbo-instruct",
|
49 |
-
"qwen/qwen-72b-chat",
|
50 |
-
"google/gemma-2-27b-it"
|
51 |
-
]
|
52 |
-
|
53 |
-
class QueryModel(BaseModel):
|
54 |
-
user_query: str = Field(..., description="User's coding query")
|
55 |
-
model_id: ModelID = Field(
|
56 |
-
default="meta-llama/llama-3-70b-instruct",
|
57 |
-
description="ID of the model to use for response generation"
|
58 |
-
)
|
59 |
-
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
|
60 |
-
user_id: str = Field(..., description="Unique identifier for the user")
|
61 |
-
|
62 |
-
class Config:
|
63 |
-
schema_extra = {
|
64 |
-
"example": {
|
65 |
-
"user_query": "How do I implement a binary search in Python?",
|
66 |
-
"model_id": "meta-llama/llama-3-70b-instruct",
|
67 |
-
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
|
68 |
-
"user_id": "user123"
|
69 |
-
}
|
70 |
-
}
|
71 |
-
|
72 |
-
class NewsQueryModel(BaseModel):
|
73 |
-
query: str = Field(..., description="News topic to search for")
|
74 |
-
model_id: ModelID = Field(
|
75 |
-
default="openai/gpt-4o-mini",
|
76 |
-
description="ID of the model to use for response generation"
|
77 |
-
)
|
78 |
-
class Config:
|
79 |
-
schema_extra = {
|
80 |
-
"example": {
|
81 |
-
"query": "Latest developments in AI",
|
82 |
-
"model_id": "openai/gpt-4o-mini"
|
83 |
-
}
|
84 |
-
}
|
85 |
-
|
86 |
-
@lru_cache()
|
87 |
-
def get_api_keys():
|
88 |
-
logger.info("Loading API keys")
|
89 |
-
return {
|
90 |
-
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
|
91 |
-
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
|
92 |
-
}
|
93 |
-
|
94 |
-
api_keys = get_api_keys()
|
95 |
-
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
|
96 |
-
|
97 |
-
# In-memory storage for conversations
|
98 |
-
conversations: Dict[str, List[Dict[str, str]]] = {}
|
99 |
-
last_activity: Dict[str, float] = {}
|
100 |
-
|
101 |
-
# Token encoding
|
102 |
-
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
103 |
-
|
104 |
-
def limit_tokens(input_string, token_limit=6000):
|
105 |
-
return encoding.decode(encoding.encode(input_string)[:token_limit])
|
106 |
-
|
107 |
-
def calculate_tokens(msgs):
|
108 |
-
return sum(len(encoding.encode(str(m))) for m in msgs)
|
109 |
-
|
110 |
-
def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500):
|
111 |
-
logger.info(f"Starting chat with model: {model}")
|
112 |
-
while calculate_tokens(messages) > (8000 - max_output_tokens):
|
113 |
-
if len(messages) > max_llm_history:
|
114 |
-
messages = [messages[0]] + messages[-max_llm_history:]
|
115 |
-
else:
|
116 |
-
max_llm_history -= 1
|
117 |
-
if max_llm_history < 2:
|
118 |
-
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
|
119 |
-
logger.error(error_message)
|
120 |
-
raise HTTPException(status_code=400, detail=error_message)
|
121 |
-
|
122 |
-
try:
|
123 |
-
response = or_client.chat.completions.create(
|
124 |
-
model=model,
|
125 |
-
messages=messages,
|
126 |
-
max_tokens=max_output_tokens,
|
127 |
-
stream=True
|
128 |
-
)
|
129 |
-
|
130 |
-
full_response = ""
|
131 |
-
for chunk in response:
|
132 |
-
if chunk.choices[0].delta.content is not None:
|
133 |
-
content = chunk.choices[0].delta.content
|
134 |
-
full_response += content
|
135 |
-
yield content
|
136 |
-
|
137 |
-
# After streaming, add the full response to the conversation history
|
138 |
-
messages.append({"role": "assistant", "content": full_response})
|
139 |
-
logger.info("Chat completed successfully")
|
140 |
-
except Exception as e:
|
141 |
-
logger.error(f"Error in model response: {str(e)}")
|
142 |
-
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
143 |
-
|
144 |
-
async def verify_api_key(api_key: str = Security(api_key_header)):
|
145 |
-
if api_key != API_KEY:
|
146 |
-
logger.warning("Invalid API key used")
|
147 |
-
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
148 |
-
return api_key
|
149 |
-
|
150 |
-
# SQLite setup
|
151 |
-
DB_PATH = '/app/data/conversations.db'
|
152 |
-
|
153 |
-
def init_db():
|
154 |
-
logger.info("Initializing database")
|
155 |
-
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
|
156 |
-
conn = sqlite3.connect(DB_PATH)
|
157 |
-
c = conn.cursor()
|
158 |
-
c.execute('''CREATE TABLE IF NOT EXISTS conversations
|
159 |
-
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
160 |
-
user_id TEXT,
|
161 |
-
conversation_id TEXT,
|
162 |
-
message TEXT,
|
163 |
-
response TEXT,
|
164 |
-
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
165 |
-
conn.commit()
|
166 |
-
conn.close()
|
167 |
-
logger.info("Database initialized successfully")
|
168 |
-
|
169 |
-
init_db()
|
170 |
-
|
171 |
-
def update_db(user_id, conversation_id, message, response):
|
172 |
-
logger.info(f"Updating database for conversation: {conversation_id}")
|
173 |
-
conn = sqlite3.connect(DB_PATH)
|
174 |
-
c = conn.cursor()
|
175 |
-
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
|
176 |
-
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
|
177 |
-
conn.commit()
|
178 |
-
conn.close()
|
179 |
-
logger.info("Database updated successfully")
|
180 |
-
|
181 |
-
async def clear_inactive_conversations():
|
182 |
-
while True:
|
183 |
-
|
184 |
-
current_time = time.time()
|
185 |
-
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
|
186 |
-
if current_time - last_time > 1800] # 30 minutes
|
187 |
-
for conv_id in inactive_convos:
|
188 |
-
if conv_id in conversations:
|
189 |
-
del conversations[conv_id]
|
190 |
-
if conv_id in last_activity:
|
191 |
-
del last_activity[conv_id]
|
192 |
-
await asyncio.sleep(60) # Check every minute
|
193 |
-
|
194 |
-
@app.on_event("startup")
|
195 |
-
async def startup_event():
|
196 |
-
logger.info("Starting up the application")
|
197 |
-
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
|
198 |
-
asyncio.create_task(clear_inactive_conversations())
|
199 |
-
|
200 |
-
@app.post("/coding-assistant")
|
201 |
-
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
202 |
-
"""
|
203 |
-
Coding assistant endpoint that provides programming help based on user queries.
|
204 |
-
Available models:
|
205 |
-
- meta-llama/llama-3-70b-instruct (default)
|
206 |
-
- anthropic/claude-3.5-sonnet
|
207 |
-
- deepseek/deepseek-coder
|
208 |
-
- anthropic/claude-3-haiku
|
209 |
-
- openai/gpt-3.5-turbo-instruct
|
210 |
-
- qwen/qwen-72b-chat
|
211 |
-
- google/gemma-2-27b-it
|
212 |
-
- openai/gpt-4o-mini
|
213 |
-
Requires API Key authentication via X-API-Key header.
|
214 |
-
"""
|
215 |
-
logger.info(f"Received coding assistant query: {query.user_query}")
|
216 |
-
if query.conversation_id not in conversations:
|
217 |
-
conversations[query.conversation_id] = [
|
218 |
-
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
|
219 |
-
]
|
220 |
-
|
221 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
|
222 |
-
last_activity[query.conversation_id] = time.time()
|
223 |
-
|
224 |
-
# Limit tokens in the conversation history
|
225 |
-
limited_conversation = conversations[query.conversation_id]
|
226 |
-
|
227 |
-
def process_response():
|
228 |
-
full_response = ""
|
229 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
230 |
-
full_response += content
|
231 |
-
yield content
|
232 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
|
233 |
-
logger.info(f"Completed coding assistant response for query: {query.user_query}")
|
234 |
-
|
235 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
236 |
-
|
237 |
-
# New functions for news assistant
|
238 |
-
|
239 |
-
def internet_search(query, search_type="web", num_results=20):
|
240 |
-
logger.info(f"Performing internet search for query: {query}, type: {search_type}")
|
241 |
-
url = f"https://api.search.brave.com/res/v1/{'web' if search_type == 'web' else 'news'}/search"
|
242 |
-
|
243 |
-
headers = {
|
244 |
-
"Accept": "application/json",
|
245 |
-
"Accept-Encoding": "gzip",
|
246 |
-
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
|
247 |
-
}
|
248 |
-
params = {"q": query}
|
249 |
-
|
250 |
-
response = requests.get(url, headers=headers, params=params)
|
251 |
-
|
252 |
-
if response.status_code != 200:
|
253 |
-
logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
|
254 |
-
return []
|
255 |
-
|
256 |
-
search_data = response.json()["web"]["results"] if search_type == "web" else response.json()["results"]
|
257 |
-
|
258 |
-
processed_results = [
|
259 |
-
{
|
260 |
-
"title": item["title"],
|
261 |
-
"snippet": item["extra_snippets"][0],
|
262 |
-
"last_updated": item.get("age", ""),
|
263 |
-
"url":item.get("url", "")
|
264 |
-
}
|
265 |
-
for item in search_data
|
266 |
-
if item.get("extra_snippets")
|
267 |
-
][:num_results]
|
268 |
-
|
269 |
-
logger.info(f"Retrieved {len(processed_results)} search results")
|
270 |
-
return processed_results
|
271 |
-
|
272 |
-
@lru_cache(maxsize=100)
|
273 |
-
def cached_internet_search(query: str):
|
274 |
-
logger.info(f"Performing cached internet search for query: {query}")
|
275 |
-
return internet_search(query, search_type="news")
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
data = internet_search(query, search_type="web")
|
286 |
-
prompt_generator = generate_search_prompt
|
287 |
-
system_prompt = SEARCH_ASSISTANT_PROMPT
|
288 |
-
|
289 |
-
if not data:
|
290 |
-
logger.error(f"Failed to fetch {data_type} data")
|
291 |
-
return None
|
292 |
-
|
293 |
-
prompt = prompt_generator(query, data)
|
294 |
-
messages = [
|
295 |
-
{"role": "system", "content": system_prompt},
|
296 |
-
{"role": "user", "content": prompt}
|
297 |
-
]
|
298 |
-
|
299 |
-
logger.info(f"{data_type.capitalize()} analysis completed")
|
300 |
-
return messages,data
|
301 |
-
|
302 |
-
class QueryModel(BaseModel):
|
303 |
-
query: str = Field(..., description="Search query")
|
304 |
-
model_id: ModelID = Field(
|
305 |
-
default="openai/gpt-4o-mini",
|
306 |
-
description="ID of the model to use for response generation"
|
307 |
-
)
|
308 |
-
class Config:
|
309 |
-
schema_extra = {
|
310 |
-
"example": {
|
311 |
-
"query": "What are the latest advancements in quantum computing?",
|
312 |
-
"model_id": "meta-llama/llama-3-70b-instruct"
|
313 |
-
}
|
314 |
-
}
|
315 |
-
|
316 |
-
def search_assistant_api(query, data_type, model="openai/gpt-4o-mini"):
|
317 |
-
logger.info(f"Received {data_type} assistant query: {query}")
|
318 |
-
messages, search_data = analyze_data(query, data_type)
|
319 |
-
|
320 |
-
if not messages:
|
321 |
-
logger.error(f"Failed to fetch {data_type} data")
|
322 |
-
raise HTTPException(status_code=500, detail=f"Failed to fetch {data_type} data")
|
323 |
-
|
324 |
-
def process_response():
|
325 |
-
logger.info(f"Generating response using LLM: {messages}")
|
326 |
-
full_response = ""
|
327 |
-
for content in chat_with_llama_stream(messages, model=model):
|
328 |
-
full_response += content
|
329 |
-
yield content
|
330 |
-
logger.info(f"Completed {data_type} assistant response for query: {query}")
|
331 |
-
logger.info(f"LLM Response: {full_response}")
|
332 |
-
yield "<json><ref>"+ json.dumps(search_data)+"</ref></json>"
|
333 |
-
return process_response
|
334 |
-
|
335 |
-
def create_streaming_response(generator):
|
336 |
-
return StreamingResponse(generator(), media_type="text/event-stream")
|
337 |
-
|
338 |
-
@app.post("/news-assistant")
|
339 |
-
async def news_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
|
340 |
-
"""
|
341 |
-
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
|
342 |
-
Requires API Key authentication via X-API-Key header.
|
343 |
-
"""
|
344 |
-
response_generator = search_assistant_api(query.query, "news", model=query.model_id)
|
345 |
-
return create_streaming_response(response_generator)
|
346 |
-
|
347 |
-
@app.post("/search-assistant")
|
348 |
-
async def search_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
|
349 |
-
"""
|
350 |
-
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
|
351 |
-
Requires API Key authentication via X-API-Key header.
|
352 |
-
"""
|
353 |
-
response_generator = search_assistant_api(query.query, "web", model=query.model_id)
|
354 |
-
return create_streaming_response(response_generator)
|
355 |
-
|
356 |
-
from pydantic import BaseModel, Field
|
357 |
-
import yaml
|
358 |
-
import json
|
359 |
-
from yaml.loader import SafeLoader
|
360 |
-
|
361 |
-
class FollowupQueryModel(BaseModel):
|
362 |
-
query: str = Field(..., description="User's query for the followup agent")
|
363 |
-
model_id: ModelID = Field(
|
364 |
-
default="openai/gpt-4o-mini",
|
365 |
-
description="ID of the model to use for response generation"
|
366 |
-
)
|
367 |
-
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
|
368 |
-
user_id: str = Field(..., description="Unique identifier for the user")
|
369 |
-
tool_call: Literal["web", "news", "auto"] = Field(
|
370 |
-
default="auto",
|
371 |
-
description="Type of tool to call (web, news, auto)"
|
372 |
-
)
|
373 |
-
|
374 |
-
class Config:
|
375 |
-
schema_extra = {
|
376 |
-
"example": {
|
377 |
-
"query": "How can I improve my productivity?",
|
378 |
-
"model_id": "openai/gpt-4o-mini",
|
379 |
-
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
|
380 |
-
"user_id": "user123",
|
381 |
-
"tool_call": "auto"
|
382 |
-
}
|
383 |
-
}
|
384 |
-
|
385 |
-
import re
|
386 |
-
|
387 |
-
def parse_followup_and_tools(input_text):
|
388 |
-
# Remove extra brackets and excess quotes
|
389 |
-
cleaned_text = re.sub(r'\[|\]|"+', ' ', input_text)
|
390 |
-
|
391 |
-
# Extract response content
|
392 |
-
response_pattern = re.compile(r'<response>(.*?)</response>', re.DOTALL)
|
393 |
-
response_parts = response_pattern.findall(cleaned_text)
|
394 |
-
combined_response = ' '.join(response_parts)
|
395 |
-
|
396 |
-
# Normalize spaces in the combined response
|
397 |
-
combined_response = ' '.join(combined_response.split())
|
398 |
-
|
399 |
-
parsed_interacts = []
|
400 |
-
parsed_tools = []
|
401 |
-
|
402 |
-
# Parse interacts and tools
|
403 |
-
blocks = re.finditer(r'<(interact|tools?)(.*?)>(.*?)</\1>', cleaned_text, re.DOTALL)
|
404 |
-
for block in blocks:
|
405 |
-
block_type, _, content = block.groups()
|
406 |
-
content = content.strip()
|
407 |
-
|
408 |
-
if block_type == 'interact':
|
409 |
-
question_blocks = re.split(r'\s*-\s*text:', content)[1:]
|
410 |
-
for qblock in question_blocks:
|
411 |
-
parts = re.split(r'\s*options:\s*', qblock, maxsplit=1)
|
412 |
-
if len(parts) == 2:
|
413 |
-
question = ' '.join(parts[0].split()) # Normalize spaces
|
414 |
-
options = [' '.join(opt.split()) for opt in re.split(r'\s*-\s*', parts[1]) if opt.strip()]
|
415 |
-
parsed_interacts.append({'question': question, 'options': options})
|
416 |
-
|
417 |
-
elif block_type.startswith('tool'): # This will match both 'tool' and 'tools'
|
418 |
-
tool_match = re.search(r'text:\s*(.*?)\s*options:\s*-\s*(.*)', content, re.DOTALL)
|
419 |
-
if tool_match:
|
420 |
-
tool_name = ' '.join(tool_match.group(1).split()) # Normalize spaces
|
421 |
-
option = ' '.join(tool_match.group(2).split()) # Normalize spaces
|
422 |
-
parsed_tools.append({'name': tool_name, 'input': option})
|
423 |
-
|
424 |
-
return combined_response, parsed_interacts, parsed_tools
|
425 |
-
|
426 |
-
@app.post("/followup-agent")
|
427 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
428 |
-
"""
|
429 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
430 |
-
Requires API Key authentication via X-API-Key header.
|
431 |
-
"""
|
432 |
-
logger.info(f"Received followup agent query: {query.query}")
|
433 |
-
|
434 |
-
if query.conversation_id not in conversations:
|
435 |
-
conversations[query.conversation_id] = [
|
436 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
437 |
-
]
|
438 |
-
|
439 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
440 |
-
last_activity[query.conversation_id] = time.time()
|
441 |
-
|
442 |
-
# Limit tokens in the conversation history
|
443 |
-
limited_conversation = conversations[query.conversation_id]
|
444 |
-
|
445 |
-
def process_response():
|
446 |
-
full_response = ""
|
447 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
448 |
-
full_response += content
|
449 |
-
yield content
|
450 |
-
|
451 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
452 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
453 |
-
|
454 |
-
result = {
|
455 |
-
"response": response_content,
|
456 |
-
"clarification": interact
|
457 |
-
}
|
458 |
-
|
459 |
-
yield "\n\n" + json.dumps(result)
|
460 |
-
|
461 |
-
# Add the assistant's response to the conversation history
|
462 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
463 |
-
|
464 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
465 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
466 |
-
|
467 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
468 |
-
|
469 |
-
@app.post("/v2/followup-agent")
|
470 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
471 |
-
"""
|
472 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
473 |
-
Requires API Key authentication via X-API-Key header.
|
474 |
-
"""
|
475 |
-
logger.info(f"Received followup agent query: {query.query}")
|
476 |
-
|
477 |
-
if query.conversation_id not in conversations:
|
478 |
-
conversations[query.conversation_id] = [
|
479 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
480 |
-
]
|
481 |
-
|
482 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
483 |
-
last_activity[query.conversation_id] = time.time()
|
484 |
-
|
485 |
-
# Limit tokens in the conversation history
|
486 |
-
limited_conversation = conversations[query.conversation_id]
|
487 |
-
|
488 |
-
def process_response():
|
489 |
-
full_response = ""
|
490 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
491 |
-
full_response += content
|
492 |
-
yield content
|
493 |
-
|
494 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
495 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
496 |
-
|
497 |
-
result = {
|
498 |
-
"clarification": interact
|
499 |
-
}
|
500 |
-
|
501 |
-
yield "\n<json>"
|
502 |
-
yield json.dumps(result)
|
503 |
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
509 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
|
553 |
-
|
554 |
-
"clarification": interact,
|
555 |
-
"tools": tools
|
556 |
-
}
|
557 |
|
558 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
"""
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
}
|
619 |
-
|
620 |
-
yield "<followup-json>\n\n"
|
621 |
-
yield json.dumps(result) + "\n\n"
|
622 |
-
yield "</followup-json>\n\n"
|
623 |
-
|
624 |
-
# Add the assistant's response to the conversation history
|
625 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
626 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
627 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
628 |
-
|
629 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
630 |
-
|
631 |
-
|
632 |
-
@app.post("/v4/followup-agent")
|
633 |
-
async def followup_agent_v4(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
634 |
-
"""
|
635 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
636 |
-
Requires API Key authentication via X-API-Key header.
|
637 |
-
"""
|
638 |
-
logger.info(f"Received followup agent query: {query.query}")
|
639 |
-
|
640 |
-
if query.conversation_id not in conversations:
|
641 |
-
conversations[query.conversation_id] = [
|
642 |
-
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
|
643 |
-
]
|
644 |
-
|
645 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
646 |
-
last_activity[query.conversation_id] = time.time()
|
647 |
-
|
648 |
-
# Limit tokens in the conversation history
|
649 |
-
limited_conversation = conversations[query.conversation_id]
|
650 |
-
|
651 |
-
|
652 |
-
async def process_response():
|
653 |
-
yield "<followup-response>"+"\n"
|
654 |
-
full_response = ""
|
655 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
656 |
-
full_response += content
|
657 |
-
yield content
|
658 |
-
yield "</followup-response>"+"\n"
|
659 |
-
yield "--END_SECTION--\n"
|
660 |
-
|
661 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
662 |
-
|
663 |
-
|
664 |
-
response_content, interact, tools = parse_followup_and_tools(full_response)
|
665 |
-
result = {
|
666 |
-
"clarification": interact
|
667 |
-
}
|
668 |
-
|
669 |
-
yield "<followup-json>" + "\n"
|
670 |
-
yield json.dumps(result) + "\n"
|
671 |
-
yield "</followup-json>" +"\n"
|
672 |
-
yield "--END_SECTION--\n"
|
673 |
-
# Add the assistant's response to the conversation history
|
674 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
675 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
676 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
677 |
-
|
678 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
679 |
-
|
680 |
-
## Digiyatra
|
681 |
-
|
682 |
-
@app.post("/digiyatra-followup")
|
683 |
-
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
684 |
-
"""
|
685 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
686 |
-
Requires API Key authentication via X-API-Key header.
|
687 |
-
"""
|
688 |
-
logger.info(f"Received followup agent query: {query.query}")
|
689 |
-
|
690 |
-
if query.conversation_id not in conversations:
|
691 |
-
conversations[query.conversation_id] = [
|
692 |
-
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
|
693 |
-
]
|
694 |
-
|
695 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
696 |
-
last_activity[query.conversation_id] = time.time()
|
697 |
-
|
698 |
-
# Limit tokens in the conversation history
|
699 |
-
limited_conversation = conversations[query.conversation_id]
|
700 |
-
|
701 |
-
def process_response():
|
702 |
-
full_response = ""
|
703 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
704 |
-
full_response += content
|
705 |
-
yield content
|
706 |
-
|
707 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
708 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
709 |
-
|
710 |
-
result = {
|
711 |
-
"response": response_content,
|
712 |
-
"clarification": interact
|
713 |
-
}
|
714 |
-
|
715 |
-
yield "\n\n" + json.dumps(result)
|
716 |
-
|
717 |
-
# Add the assistant's response to the conversation history
|
718 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
719 |
-
|
720 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
721 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
722 |
-
|
723 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
724 |
-
|
725 |
-
|
726 |
-
@app.post("/v2/digiyatra-followup")
|
727 |
-
async def digi_followup_agent_v2(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
|
728 |
-
"""
|
729 |
-
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
|
730 |
-
Requires API Key authentication via X-API-Key header.
|
731 |
-
"""
|
732 |
-
logger.info(f"Received followup agent query: {query.query}")
|
733 |
-
|
734 |
-
if query.conversation_id not in conversations:
|
735 |
-
conversations[query.conversation_id] = [
|
736 |
-
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
|
737 |
-
]
|
738 |
-
|
739 |
-
conversations[query.conversation_id].append({"role": "user", "content": query.query})
|
740 |
-
last_activity[query.conversation_id] = time.time()
|
741 |
-
|
742 |
-
# Limit tokens in the conversation history
|
743 |
-
limited_conversation = conversations[query.conversation_id]
|
744 |
-
|
745 |
-
def process_response():
|
746 |
-
full_response = ""
|
747 |
-
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
|
748 |
-
full_response += content
|
749 |
-
yield json.dumps({"type": "response","content": content}) + "\n"
|
750 |
-
|
751 |
-
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
|
752 |
-
response_content, interact,tools = parse_followup_and_tools(full_response)
|
753 |
-
|
754 |
-
result = {
|
755 |
-
"response": response_content,
|
756 |
-
"clarification": interact
|
757 |
-
}
|
758 |
-
yield json.dumps({"type": "interact","content": result}) +"\n"
|
759 |
-
|
760 |
-
# Add the assistant's response to the conversation history
|
761 |
-
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
|
762 |
-
|
763 |
-
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
|
764 |
-
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
|
765 |
-
|
766 |
-
return StreamingResponse(process_response(), media_type="text/event-stream")
|
767 |
-
|
768 |
-
|
769 |
-
from document_generator import router as document_generator_router
|
770 |
-
app.include_router(document_generator_router, prefix="/api/v1")
|
771 |
-
|
772 |
-
from document_generator_v2 import router as document_generator_router_v2
|
773 |
-
app.include_router(document_generator_router_v2, prefix="/api/v2")
|
774 |
-
|
775 |
-
from document_generator_v3 import router as document_generator_router_v3
|
776 |
-
app.include_router(document_generator_router_v3, prefix="/api/v3")
|
777 |
-
|
778 |
-
from document_generator_v4 import router as document_generator_router_v4
|
779 |
-
app.include_router(document_generator_router_v4, prefix="/api/v4")
|
780 |
-
|
781 |
-
from fastapi.middleware.cors import CORSMiddleware
|
782 |
|
783 |
-
# CORS middleware setup
|
784 |
-
app.add_middleware(
|
785 |
-
CORSMiddleware,
|
786 |
-
allow_origins=[
|
787 |
-
"http://127.0.0.1:5501/",
|
788 |
-
"http://localhost:3000",
|
789 |
-
"https://www.elevaticsai.com",
|
790 |
-
"https://www.elevatics.cloud",
|
791 |
-
"https://www.elevatics.online",
|
792 |
-
"https://www.elevatics.ai",
|
793 |
-
"https://elevaticsai.com",
|
794 |
-
"https://elevatics.cloud",
|
795 |
-
"https://elevatics.online",
|
796 |
-
"https://elevatics.ai",
|
797 |
-
"https://pvanand-specialized-agents.hf.space",
|
798 |
-
"https://pvanand-general-chat.hf.space"
|
799 |
-
],
|
800 |
-
allow_credentials=True,
|
801 |
-
allow_methods=["GET", "POST"],
|
802 |
-
allow_headers=["*"],
|
803 |
-
expose_headers=["Content-Disposition"]
|
804 |
-
)
|
805 |
if __name__ == "__main__":
|
806 |
import uvicorn
|
807 |
-
|
808 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import shutil
|
3 |
+
import zipfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import logging
|
5 |
+
import tempfile
|
6 |
+
import magic
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Set, Optional
|
9 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Request
|
10 |
+
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
11 |
+
from fastapi.staticfiles import StaticFiles
|
12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
13 |
+
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(
|
17 |
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
# Initialize FastAPI app
|
23 |
+
app = FastAPI(title="Static Site Server")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Add security middlewares
|
26 |
+
app.add_middleware(
|
27 |
+
CORSMiddleware,
|
28 |
+
allow_origins=["*"], # Configure as needed
|
29 |
+
allow_credentials=True,
|
30 |
+
allow_methods=["*"],
|
31 |
+
allow_headers=["*"],
|
32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
app.add_middleware(
|
35 |
+
TrustedHostMiddleware,
|
36 |
+
allowed_hosts=["*"] # Configure as needed
|
37 |
+
)
|
|
|
|
|
38 |
|
39 |
+
# Constants
|
40 |
+
MAX_UPLOAD_SIZE = 100 * 1024 * 1024 # 100MB
|
41 |
+
ALLOWED_EXTENSIONS = {'.html', '.css', '.js', '.jpg', '.jpeg', '.png', '.gif', '.svg', '.ico', '.woff', '.woff2', '.ttf', '.eot'}
|
42 |
+
|
43 |
+
class SiteManager:
|
44 |
+
def __init__(self):
|
45 |
+
self.sites_dir = Path("/app/sites")
|
46 |
+
self.temp_dir = Path("/app/temp")
|
47 |
+
self.active_sites: Set[str] = set()
|
48 |
+
|
49 |
+
# Ensure directories exist
|
50 |
+
self.sites_dir.mkdir(parents=True, exist_ok=True)
|
51 |
+
self.temp_dir.mkdir(parents=True, exist_ok=True)
|
52 |
+
|
53 |
+
# Load existing sites
|
54 |
+
self._load_existing_sites()
|
55 |
+
|
56 |
+
def _load_existing_sites(self):
|
57 |
+
"""Load existing sites from disk"""
|
58 |
+
logger.info("Loading existing sites...")
|
59 |
+
for site_dir in self.sites_dir.iterdir():
|
60 |
+
if site_dir.is_dir() and (site_dir / 'index.html').exists():
|
61 |
+
self.active_sites.add(site_dir.name)
|
62 |
+
logger.info(f"Loaded site: {site_dir.name}")
|
63 |
+
|
64 |
+
def _validate_file_types(self, zip_path: Path) -> bool:
|
65 |
+
"""Validate file types in ZIP archive"""
|
66 |
+
mime = magic.Magic(mime=True)
|
67 |
+
with zipfile.ZipFile(zip_path) as zip_ref:
|
68 |
+
for file_info in zip_ref.filelist:
|
69 |
+
if file_info.filename.endswith('/'): # Skip directories
|
70 |
+
continue
|
71 |
+
|
72 |
+
suffix = Path(file_info.filename).suffix.lower()
|
73 |
+
if suffix not in ALLOWED_EXTENSIONS:
|
74 |
+
return False
|
75 |
+
|
76 |
+
# Extract file to check MIME type
|
77 |
+
with tempfile.NamedTemporaryFile() as tmp:
|
78 |
+
with zip_ref.open(file_info) as source:
|
79 |
+
shutil.copyfileobj(source, tmp)
|
80 |
+
tmp.flush()
|
81 |
+
mime_type = mime.from_file(tmp.name)
|
82 |
+
if mime_type.startswith('application/x-'):
|
83 |
+
return False
|
84 |
+
return True
|
85 |
+
|
86 |
+
async def deploy_site(self, unique_id: str, zip_file: UploadFile) -> dict:
|
87 |
+
"""Deploy a new site from a ZIP file"""
|
88 |
+
if await zip_file.read(1) == b'':
|
89 |
+
raise HTTPException(status_code=400, detail="Empty file")
|
90 |
+
await zip_file.seek(0)
|
91 |
+
|
92 |
+
# Create temporary file
|
93 |
+
temp_file = self.temp_dir / f"{unique_id}.zip"
|
94 |
+
try:
|
95 |
+
# Save uploaded file
|
96 |
+
content = await zip_file.read()
|
97 |
+
if len(content) > MAX_UPLOAD_SIZE:
|
98 |
+
raise HTTPException(status_code=400, detail="File too large")
|
99 |
|
100 |
+
temp_file.write_bytes(content)
|
|
|
|
|
|
|
101 |
|
102 |
+
# Validate ZIP file
|
103 |
+
if not zipfile.is_zipfile(temp_file):
|
104 |
+
raise HTTPException(status_code=400, detail="Invalid ZIP file")
|
105 |
+
|
106 |
+
# Validate file types
|
107 |
+
if not self._validate_file_types(temp_file):
|
108 |
+
raise HTTPException(status_code=400, detail="Invalid file types in ZIP")
|
109 |
|
110 |
+
# Process the ZIP file
|
111 |
+
site_path = self.sites_dir / unique_id
|
112 |
+
with zipfile.ZipFile(temp_file) as zip_ref:
|
113 |
+
# Verify index.html exists
|
114 |
+
if not any(name.endswith('/index.html') or name == 'index.html'
|
115 |
+
for name in zip_ref.namelist()):
|
116 |
+
raise HTTPException(
|
117 |
+
status_code=400,
|
118 |
+
detail="ZIP file must contain index.html in root directory"
|
119 |
+
)
|
120 |
+
|
121 |
+
# Clear existing site if present
|
122 |
+
if site_path.exists():
|
123 |
+
shutil.rmtree(site_path)
|
124 |
+
|
125 |
+
# Extract files
|
126 |
+
zip_ref.extractall(self.temp_dir / unique_id)
|
127 |
+
|
128 |
+
# Move to final location
|
129 |
+
extraction_path = self.temp_dir / unique_id
|
130 |
+
root_dir = next(
|
131 |
+
(p for p in extraction_path.iterdir() if p.is_dir()
|
132 |
+
and (p / 'index.html').exists()),
|
133 |
+
extraction_path
|
134 |
+
)
|
135 |
+
shutil.move(str(root_dir), str(site_path))
|
136 |
+
|
137 |
+
self.active_sites.add(unique_id)
|
138 |
+
return {
|
139 |
+
"status": "success",
|
140 |
+
"message": f"Site deployed at /{unique_id}",
|
141 |
+
"url": f"/{unique_id}"
|
142 |
+
}
|
143 |
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Error deploying site {unique_id}: {str(e)}")
|
146 |
+
raise HTTPException(status_code=500, detail=str(e))
|
147 |
+
finally:
|
148 |
+
# Cleanup
|
149 |
+
if temp_file.exists():
|
150 |
+
temp_file.unlink()
|
151 |
+
cleanup_path = self.temp_dir / unique_id
|
152 |
+
if cleanup_path.exists():
|
153 |
+
shutil.rmtree(cleanup_path)
|
154 |
+
|
155 |
+
def remove_site(self, unique_id: str) -> bool:
|
156 |
+
"""Remove a deployed site"""
|
157 |
+
if unique_id in self.active_sites:
|
158 |
+
site_path = self.sites_dir / unique_id
|
159 |
+
if site_path.exists():
|
160 |
+
shutil.rmtree(site_path)
|
161 |
+
self.active_sites.remove(unique_id)
|
162 |
+
return True
|
163 |
+
return False
|
164 |
+
|
165 |
+
# Initialize site manager
|
166 |
+
site_manager = SiteManager()
|
167 |
+
|
168 |
+
@app.post("/deploy/{unique_id}")
|
169 |
+
async def deploy_site(unique_id: str, file: UploadFile = File(...)):
|
170 |
+
"""Deploy a new site from a ZIP file"""
|
171 |
+
if not file.filename.endswith('.zip'):
|
172 |
+
raise HTTPException(status_code=400, detail="File must be a ZIP archive")
|
173 |
+
|
174 |
+
result = await site_manager.deploy_site(unique_id, file)
|
175 |
+
return JSONResponse(content=result)
|
176 |
+
|
177 |
+
@app.delete("/site/{unique_id}")
|
178 |
+
async def remove_site(unique_id: str):
|
179 |
+
"""Remove a deployed site"""
|
180 |
+
if site_manager.remove_site(unique_id):
|
181 |
+
return {"status": "success", "message": f"Site {unique_id} removed"}
|
182 |
+
raise HTTPException(status_code=404, detail="Site not found")
|
183 |
+
|
184 |
+
@app.get("/sites")
|
185 |
+
async def list_sites():
|
186 |
+
"""List all deployed sites"""
|
187 |
+
return {"sites": list(site_manager.active_sites)}
|
188 |
+
|
189 |
+
@app.get("/health")
|
190 |
+
async def health_check():
|
191 |
+
"""Health check endpoint"""
|
192 |
+
return {"status": "healthy", "sites_count": len(site_manager.active_sites)}
|
193 |
+
|
194 |
+
# Mount static file handlers for each site
|
195 |
+
@app.on_event("startup")
|
196 |
+
async def startup_event():
|
197 |
+
"""Configure static file handlers for existing sites"""
|
198 |
+
logger.info("Starting up server...")
|
199 |
+
for site_id in site_manager.active_sites:
|
200 |
+
site_path = site_manager.sites_dir / site_id
|
201 |
+
app.mount(f"/{site_id}", StaticFiles(directory=str(site_path), html=True), name=site_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
if __name__ == "__main__":
|
204 |
import uvicorn
|
205 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|