File size: 51,750 Bytes
41c4cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3646fff
8ef4d78
41c4cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef4d78
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
 
 
 
 
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
41c4cf9
 
 
 
8ef4d78
41c4cf9
8ef4d78
 
41c4cf9
 
 
8ef4d78
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
41c4cf9
 
 
 
8ef4d78
41c4cf9
8ef4d78
41c4cf9
 
 
 
8ef4d78
 
 
 
41c4cf9
8ef4d78
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
 
 
 
 
8ef4d78
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c4cf9
8ef4d78
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import streamlit as st
import numpy as np
import pandas as pd
import re
from streamlit_extras.dataframe_explorer import dataframe_explorer
import warnings
from sdv.metadata import SingleTableMetadata
from streamlit_extras.stateful_button import button
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, LSTM, Bidirectional, Conv1D, MaxPooling1D, Flatten, Concatenate, Reshape, RepeatVector
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import MeanSquaredError
from streamlit_extras.stylable_container import stylable_container
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
import base64
from sdv.datasets.local import load_csvs
import pyodbc
import pymssql
from streamlit_app import sidebar

warnings.filterwarnings('ignore')
st.set_page_config(
    page_title='Profilify: Your AI Assisted Data Profiling App',
    layout='wide',  
    initial_sidebar_state='collapsed'  
)
st.markdown("""
    <style>
    
           /* Remove blank space at top and bottom */ 
           .block-container {
               padding-top: 2.8rem;
               /*padding-bottom: 1rem;*/
            }
           
           /* Remove blank space at the center canvas */ 
           .st-emotion-cache-z5fcl4 {
               position: relative;
               top: -62px;
               }
           
           /* Make the toolbar transparent and the content below it clickable */ 
           .st-emotion-cache-18ni7ap {
               pointer-events: none;
               background: rgb(255 255 255 / 0%)
               }
           .st-emotion-cache-zq5wmm {
               pointer-events: auto;
               background: rgb(255 255 255);
               border-radius: 5px;
               }
    </style>
    """, unsafe_allow_html=True)

######
def main():
    # st.title('PAGE TITLE')  # Change this for each page
    sidebar()
########
    
    def load_dataframe_to_sqlserver(df, table_name, connection_string):
        # Establish a connection to the database
        conn = pyodbc.connect(connection_string)
        cursor = conn.cursor()
        
        # Drop table if it exists
        drop_table_sql = f"IF OBJECT_ID('{table_name}', 'U') IS NOT NULL DROP TABLE {table_name}"
        
        try:
            cursor.execute(drop_table_sql)
            conn.commit()
        except Exception as e:
            st.error(f"Error dropping table. Please try with a different name.")
        
        # Create table SQL statement based on DataFrame columns and types
        create_table_sql = f"CREATE TABLE {table_name} ("
        for column in df.columns:
            dtype = str(df[column].dtype)
            sql_dtype = 'NVARCHAR(MAX)'
            create_table_sql += f"{column} {sql_dtype}, "
        create_table_sql = create_table_sql.rstrip(', ') + ')'
        
        try:
            # Execute table creation
            cursor.execute(create_table_sql)
            conn.commit()
        except Exception as e:
            st.error(f"Error Creating table. Please try with a different name.")
    
        # Insert DataFrame data into the table using bulk insert
        insert_sql = f"INSERT INTO {table_name} ({', '.join(df.columns)}) VALUES ({', '.join(['?' for _ in df.columns])})"
        
        try:
            # Using `fast_executemany` for bulk inserts
            cursor.fast_executemany = True
            cursor.executemany(insert_sql, df.values.tolist())
            conn.commit()
            st.success(f"Data Imported with table name: '{table_name}' successfully.")
        except Exception as e:
            st.error(f"Error Inserting Data. Please try with a different name.")
        
        cursor.close()
        conn.close()
        
    
    def clear_cache():
        keys = list(st.session_state.keys())
        for key in keys:
            st.session_state.pop(key)
            
    def set_bg_hack(main_bg):
            '''
            A function to unpack an image from root folder and set as bg.
         
            Returns
            -------
            The background.
            '''
            # set bg name
            main_bg_ext = "png"
                
            st.markdown(
                 f"""
                 <style>
                 .stApp {{
                     background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
                     background-size: cover
                 }}
                 </style>
                 """,
                 unsafe_allow_html=True
             )
    #set_bg_hack("bg2.png")
    header_style = """
        <style>
            .header {
                color: black;  /* Soft dark gray text color for readability */
                width: 103%;
                font-size: 60px;  /* Large font size */
                font-weight: bold;  /* Bold text */
                line-height: 1.2;  /* Improved readability */
                margin-bottom: 30px;  /* Add some space below the header */
                padding: 20px;  /* Add padding for better spacing */
                background-image:
                    linear-gradient(to right, rgba(255, 140, 0, 0.3) 25%, transparent 75%),  /* Darker orange with higher opacity */
                    linear-gradient(to bottom, rgba(255, 140, 0, 0.3) 15%, transparent 75%),
                    linear-gradient(to left, rgba(255, 140, 0, 0.3) 25%, transparent 55%),
                    linear-gradient(to top, rgba(255, 140, 0, 0.3) 25%, transparent 95%);
                background-blend-mode: overlay;
                background-size: 250px 350px;
                border-radius: 10px;  /* Add border radius for rounded corners */
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);  /* Add shadow for depth */
            }
        </style>
    """
    
    
    
    
    
    content_style = """
        <style>
            .content {
                font-size: 40px;  /* Larger font size for content */
                line-height: 1.6;  /* Improved readability */
                width: 103%;
                padding: 10px;  /* Add padding for better spacing */
                margin-bottom: 20px;
                background-color: sky-blue;  /* Background color for the header */
                border-radius: 10px;  /* Add border radius for rounded corners */
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);  /* Add shadow for depth */
            }
        </style>
    """
    
    small_style = """
        <style>
            .small {
                color: black;
                font-size: 30px;  /* Larger font size for content */
                line-height: 1.6;  /* Improved readability */
                width: 100%;
                padding: 10px;  /* Add padding for better spacing */
                margin-bottom: 10px;
                background-color: white;  /* Background color for the header */
                border-radius: 10px;  /* Add border radius for rounded corners */
            }
        </style>
    """
    
    def update_column_dtype(df, column_name, dtype):
        error_entries = pd.DataFrame()
        flag = None
        if dtype == 'System Detected':
            pass
        elif dtype == 'int64':
            try:
                df[column_name] = df[column_name].astype('int64')
            except ValueError:
                error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
                st.error('Unable to convert some entries to integer. Please Clean the column.')
        elif dtype == 'float64/numeric':
            try:
                df[column_name] = df[column_name].astype('float64')
            except ValueError:
                error_entries = df[pd.to_numeric(df[column_name], errors='coerce').isna()]
                st.error('Unable to convert some entries to float. Please Clean the column.')
        elif dtype == 'id':
            try:
                df[column_name] = df[column_name].astype('int64')
            except ValueError:
                error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
                st.error('Unable to convert some entries to id. Please Clean the column.')
        elif dtype == 'categorical/string':
            df[column_name] = df[column_name].astype('category')
        elif dtype == 'datetime':
            try:
                df[column_name] = pd.to_datetime(df[column_name], errors='raise', infer_datetime_format=True)
            except ValueError:
                error_entries = df[pd.to_datetime(df[column_name], errors='coerce', infer_datetime_format=True).isna()]
                custom_format = st.text_input("Please provide the datetime format (e.g., %Y-%m-%d):")
                if custom_format:
                    try:
                        df[column_name] = pd.to_datetime(df[column_name], errors='raise', format=custom_format)
                    except ValueError:
                        error_entries = df[pd.to_datetime(df[column_name], errors='coerce', format=custom_format).isna()]
                        st.error('Unable to parse datetime with the provided format. Please Clean the column.')
        elif dtype == 'email':
            df[column_name] = df[column_name].astype('category')
            flag= 'email'
        elif dtype == 'phone_number':
            df[column_name] = df[column_name].astype('category')
            flag= 'phone_number'
        
        return df, error_entries, flag
    
    def convert_to_special_representation(value):
        value = str(value)
        special_chars = set("!@#$%^&*()_+-=[]{}|;:,.<>?`~")
        result = ''
        for char in value:
            if char.isdigit():
                result += 'N'
            elif char.isalpha():
                result += 'A'
            elif char in special_chars:
                result += char
            else:
                # Handle other characters as needed
                result += char
        return result
    with st.container(border=True):
        st.subheader('SELECT TABLE')    
        metadata = SingleTableMetadata()
        conn = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;"
                                "Database=sqldb-ext-dev-uks-001;"
                                "UID=dbadmin;"
                                "PWD=mYpa$$w0rD" )
        query1_1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' and TABLE_NAME in ('TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM') ORDER BY TABLE_NAME ASC"
        query1_2="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' and TABLE_NAME LIKE 'PROFILED%' ORDER BY TABLE_NAME ASC"
        tab_names=list(pd.read_sql_query(query1_1,con=conn)['TABLE_NAME'])
        tab_names_edited= list(pd.read_sql_query(query1_2,con=conn)['TABLE_NAME'])
        sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache)
        mode_selector=st.selectbox("Select How you want to Proceed", ["Start Profiling with Source Data", "Load Previously Profiled Data For Further Processing"], on_change=clear_cache,placeholder='Show Options')
        if mode_selector == "Start Profiling with Source Data":
            table_selector=st.selectbox('SELECT TABLE NAME',tab_names,index=None,on_change=clear_cache,placeholder='Select table name')
        
        if mode_selector == "Load Previously Profiled Data For Further Processing":
            table_selector=st.selectbox('SELECT TABLE NAME',tab_names_edited,index=None,on_change=clear_cache,placeholder='Select table name')
        
    if table_selector is not None and sample_selector is not None:
        if sample_selector=='100':
            count="top 100"
        elif sample_selector=='10K':
            count="top 10000"
        elif sample_selector=='100K':
            count="top 100000"
        elif sample_selector=='1M':
            count="top 1000000"
        else:
            count=""
        query2="select "+count+" * from [dbo].["+table_selector+"]"
        df = pd.read_sql_query(query2,con=conn)
        main_list=df.columns.to_list()
        sub_list=['ID','LOADID','FILE_NAME']
        if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
            df=df.drop(['ID','LOADID','FILE_NAME'],axis=1)
        conn.close()
        if 'data' not in st.session_state:
            st.session_state.data= df
        metadata.detect_from_dataframe(st.session_state.data)
        st.sidebar.header("DataFrame Live Preview")
        st.sidebar.markdown("*This Window keeps the live status of the dataframe under processing. You can review this dataframe after all the changes.*")
        df_preview= st.sidebar.empty()
        df_preview.write(st.session_state.data)
        st.markdown(content_style, unsafe_allow_html=True)
        with st.container(border=True):
            cols= df.columns.to_list()
            primary_key= metadata.primary_key
            sugg_primary_keys = [col for col in cols if df[col].is_unique and df[col].dtype != 'float' and not df[col].isnull().any()]
            prob_key= sugg_primary_keys
            if primary_key in sugg_primary_keys:
                default_index = sugg_primary_keys.index(primary_key)
            else:
                sugg_primary_keys.append(primary_key)
                default_index = sugg_primary_keys.index(primary_key)
            no_y_data =[]
            email_cols=[]
            phone_cols=[]
            # cols_select= st.multiselect('Please select column(s) for Profiling and Cleansing', cols, default= cols[:5])
            tabs3= st.tabs(cols)
            for i, tab in enumerate(tabs3):
                with tab:
                    col= cols[i]
                    scol1,scol2= st.columns([4,1])
                    with scol1:
                        taba, tabb, tabc, tabd, tabe = st.tabs(["📝 DataType Validation", "🧹 Missing Value Handling", "📈 Statistical Profiling", " ✨ Pattern Exploration", "🤖 AI Assisted Data Cleansing"])
                        with taba:
                            if st.session_state.data[col].dtype.name == 'category':
                                st.session_state.data[col] = st.session_state.data[col].astype('str')
                            dtypes= ['System Detected', 'int64', 'float64/numeric', 'id', 'categorical/string','datetime', 'email', 'phone_number']
                            no_dtypes= ['int64', 'float64/numeric', 'id', 'categorical/string','datetime', 'email', 'phone_number']
                            no_dtype = False
                            if metadata.columns[col]['sdtype'] != "unknown":
                                datatype= metadata.columns[col]['sdtype']
                                st.info(f"System Identified DataType: {datatype}")
                            elif str(df[col].dtype) != 'object' and metadata.columns[col]['sdtype'] == "unknown":
                                datatype= str(df[col].dtype)
                                st.info(f"System Identified DataType: {datatype}")
                            else:
                                datatype= 'NA'
                                #st.warning("System Could Not Understand Datatype. Please Specify the Datatype")
                                no_dtype= True
                            if datatype in ['int64']:
                                def_index=1
                            if datatype in ['float64', 'numerical']:
                                def_index=2
                            if datatype in ['id']:
                                def_index=3
                            if datatype in ['categorical', 'string']:
                                def_index=4
                            if datatype in ['datetime']:
                                def_index=5
                            if datatype in ['email']:
                                def_index=6
                            if datatype in ['phone_number']:
                                def_index=7
                
                            if col == primary_key:
                                st.success("This is System Identified Primary Key")
                            elif col in prob_key:
                                st.warning("This is System suggested potential Primary Key")
                            if f'dtype_{col}' not in st.session_state:
                                st.session_state[f'dtype_{col}'] = 'initiate'
                            if st.session_state[f'dtype_{col}'] not in ['email', 'phone_number']:
                                st.session_state.flag = None
                                
                            if no_dtype == True:
                                fin_datatype= st.selectbox(f"Please Change/Define the Datatype of column: {col}:",no_dtypes, index=3, key= f'datatype_{col}')
                            else:
                                fin_datatype= st.selectbox(f"Please Change/Define the Datatype of column: {col}:",dtypes, index=def_index, key= f'datatype_{col}')
                            st.session_state[f'dtype_{col}'] = st.session_state[f'datatype_{col}']
                            st.session_state.data, error_df, st.session_state.flag= update_column_dtype(st.session_state.data,col,fin_datatype)
                
                            if error_df.empty:
                                st.success("No Datatype Validation Errors For Current Datatype")
                                try:
                                    df_preview.write(st.session_state.data)
                                except:
                                    st.warning("DataFrame Updated. But Could Not Load Preview")
                            else:
                                st.subheader("Prepare the Column for Conversion:")
                                try:
                                    edited_error_df= st.data_editor(error_df, num_rows="dynamic",column_config={
                    col: st.column_config.TextColumn(
                        col,
                        width="medium",
                    )
                }, key=f'dtype_error_{col}')
                                except:
                                    edited_error_df= st.data_editor(error_df, num_rows="dynamic",column_config={
                    col: st.column_config.TextColumn(
                        col,
                        width="medium",
                    )
                }, key=f'dtype_error_{col}')
                                check = st.button("Fix Error", key=f"Fix{col}")
                                if check:
                                    st.session_state.data= st.session_state.data.drop(error_df.index)
                                    st.session_state.data = pd.concat([st.session_state.data, edited_error_df])
                                    df_preview.write(st.session_state.data)
                            if fin_datatype in ['id', 'email', 'phone_number']:
                                no_y_data.append(col)
                            if fin_datatype in ['email']:
                                email_cols.append(col)
                            if fin_datatype in ['phone_number']:
                                phone_cols.append(col)
                            no_y_data.extend(['Validity','Validity_phone','Validity_email'])
                            total_records = len(st.session_state.data)
                        with tabc:
                            if col not in no_y_data:
                                y_data_col= st.session_state.data[[col]]
                                pr = ProfileReport(y_data_col, dark_mode=True, explorative=False, config_file=r"ydata_config.yml")
                                pr.config.html.style.primary_colors = ['#e41a1c']
                                with st.container(border=True):
                                    st_profile_report(pr, navbar=False, key=f'profile{col}') 
                            elif col in email_cols:
                                unique_emails = st.session_state.data[col].nunique()
                                duplicate_emails = total_records - unique_emails
                                          # Extract email domains
                                email_domains = st.session_state.data[col].str.extract(r'@(.+)$')[0]
                                # Count occurrences of each domain
                                email_domain_counts = email_domains.value_counts()
                                # Get the top 5 email domains
                                top_email_domains = email_domain_counts.head(5)
                                
                                           
                                # Format the top email domains for display
                                top_email_domains_str = '\n|\n'.join([f"{domain}: {count}" for domain, count in top_email_domains.items()])
                                if f'invalid_em_{col}' in st.session_state:
                                    invalid_emails= len(st.session_state[f'invalid_em_{col}'])
                                    valid_emails= total_records - invalid_emails
                                    percent_invalid_emails = invalid_emails / total_records * 100
                                    email_message = f"""
                                ## Email Column: {col}\n\n **Valid Emails:** {valid_emails} ({100 - percent_invalid_emails:.2f}%)\n\n---------------------------------------------------------------------------------------\n\n**Invalid Emails:** {invalid_emails} ({percent_invalid_emails:.2f}%)\n\n----------------------------------------------------------------------------------------\n\n**Unique Emails:** {unique_emails}\n\n-------------------------------------------------------------------------------------------------------------------------\n\n**Duplicate Emails:** {duplicate_emails}\n\n----------------------------------------------------------------------------------------------------------------------\n\n**Top 5 Email Domains:** {top_email_domains_str}
                                    """
                                    
                                else:
                                    invalid_emails= "Please Execute AI Assisted Data Validation on Email Columns for Profiling Report of them."
                                    valid_emails= "Please Execute AI Assisted Data Validation on Email Columns for Profiling Report of them."
                                    percent_invalid_emails = "Please Execute AI Assisted Data Validation on Email Columns for Profiling Report of them."
                        
                                    email_message = f"""
                                    ## Email Column: {col}\n\n **Valid Emails:** {valid_emails} \n\n---------------------------------------------------------------------------------------\n\n**Invalid Emails:** {invalid_emails}\n\n----------------------------------------------------------------------------------------\n\n**Unique Emails:** {unique_emails}\n\n-------------------------------------------------------------------------------------------------------------------------\n\n**Duplicate Emails:** {duplicate_emails}\n\n----------------------------------------------------------------------------------------------------------------------\n\n**Top 5 Email Domains:** {top_email_domains_str}
                                        """
                                
                                with st.container(border=True):
                                    st.markdown(str(email_message))
                                    ref_em=st.button('Refresh', key=f'email{col}')
                                    if ref_em:
                                        pass
                
                
                            elif col in phone_cols:
                                unique_phones = st.session_state.data[col].nunique()
                                duplicate_phones = total_records - unique_phones
                                phone_country_codes = st.session_state.data[col].str.extract(r'^\+(\d+)')[0].value_counts()
                                top_phone_country_codes = list(phone_country_codes.head(5).to_string())
                                to_remove = ['\n', ' ']
                                top_phone_country_codes = [item for item in top_phone_country_codes if item not in to_remove]
                                if f'invalid_ph_{col}' in st.session_state:
                                    invalid_phones= len(st.session_state[f'invalid_ph_{col}'])
                                    valid_phones= total_records - invalid_phones
                                    percent_invalid_phones = invalid_phones / total_records * 100
                                    phone_message= f"""
                                    
                                    ## Phone Number Column: {col}\n\n **Valid Phone Numbers:** {valid_phones} ({100 - percent_invalid_phones:.2f}%)\n\n----------------------------------------------------------------------------------------------------------\n\n**Invalid Phone Numbers:** {invalid_phones} ({percent_invalid_phones:.2f}%)\n\n----------------------------------------------------------------------------------------------------------\n\n**Unique Phone Numbers:** {unique_phones}\n\n----------------------------------------------------------------------------------------------------------\n\n**Duplicate Phone Numbers:** {duplicate_phones}\n\n----------------------------------------------------------------------------------------------------------\n\n**Top 5 Phone Country Codes:** {top_phone_country_codes}
                """
                                else:
                                    invalid_phones= "Please Execute AI Assisted Data Validation on Phone Number Columns for Profiling Report of them."
                                    valid_phones= "Please Execute AI Assisted Data Validation on Phone Number Columns for Profiling Report of them."
                                    percent_invalid_phones = "Please Execute AI Assisted Data Validation on Phone Number Columns for Profiling Report of them."
                                    phone_message=f"""
                                    
                                    ## Phone Number Column: {col}\n\n **Valid Phone Numbers:** {valid_phones} \n\n----------------------------------------------------------------------------------------------------------\n\n **Invalid Phone Numbers:** {invalid_phones} \n\n----------------------------------------------------------------------------------------------------------\n\n **Unique Phone Numbers:** {unique_phones}\n\n----------------------------------------------------------------------------------------------------------\n\n **Duplicate Phone Numbers:** {duplicate_phones}\n\n----------------------------------------------------------------------------------------------------------\n\n **Top 5 Phone Country Codes:** {top_phone_country_codes}
                """
                                
                            
                                with st.container(border=True):
                                    st.markdown(str(phone_message))
                                    ref_ph=st.button('Refresh', key=f'phone{col}')
                                    if ref_ph:
                                        pass
                        with tabd:
                            st.session_state.data_encoded = st.session_state.data.copy()
                            st.session_state.data_encoded[f'Pattern_{col}'] = st.session_state.data_encoded[col].apply(convert_to_special_representation)
                            patterns= list(st.session_state.data_encoded[f'Pattern_{col}'].unique())
                            patt_col1, patt_col2 = st.columns([1,4])
                            with patt_col1:
                                st.session_state.pattern_list= pd.DataFrame(patterns,columns=['Pattern Name'])
                                event = st.dataframe(
                                    st.session_state.pattern_list,
                                    key=f"pattern_list_data{col}",
                                    on_select="rerun",
                                    selection_mode=["multi-row"],
                                    hide_index=True,
                                    width= 10000,
                                    height= 450
                                )
                                if len(event.selection.rows) > 0:
                                    filter= list(st.session_state.pattern_list.loc[event.selection.rows]['Pattern Name'].values)
                                else:
                                    filter = None
                            if filter is not None:
                                with patt_col2:
                                    with st.container(border= True, height= 450):
                                            st.write("#####")
                        
                                            if not st.session_state.data_encoded[st.session_state.data_encoded[f'Pattern_{col}'].isin(filter)].empty:
                                                st.session_state.data_encoded[col] = st.session_state.data_encoded[col].astype('str')
                                                try:
                                                    edited_pattern_df= st.data_editor(st.session_state.data_encoded[st.session_state.data_encoded[f'Pattern_{col}'].isin(filter)], num_rows="dynamic",column_config={
                col: st.column_config.TextColumn(
                    col,
                    width="medium",
                )
            }, height=300, key=f'Valid_pattern_{col}')
                                                except:
                                                    edited_pattern_df= st.data_editor(st.session_state.data_encoded[st.session_state.data_encoded[f'Pattern_{col}'].isin(filter)], num_rows="dynamic",column_config={
            col: st.column_config.Column(
                col,
                width="medium",
            )
        }, height=300, key=f'Valid_pattern_{col}')
                                                valid_pattern = st.button("Confirm", key=f"Fix_valid_pattern_{col}")
                                                if valid_pattern:
                                                    st.session_state.data= st.session_state.data.drop(st.session_state.data_encoded[st.session_state.data_encoded[f'Pattern_{col}'].isin(filter)].index)
                                                    st.session_state.data = pd.concat([st.session_state.data, edited_pattern_df])
                                                    st.session_state.data=st.session_state.data.drop([f'Pattern_{col}'], axis=1)
                                                    st.session_state.data= st.session_state.data.sort_index()
                                                    df_preview.write(st.session_state.data)
                            else:
                                with patt_col2:
                                    with stylable_container(
                                        key=f"container_select_pattern_none{col}",
                                        css_styles="""
                                        {
                                        border: 1px solid white;
                                        border-radius: 0.5rem;
                                        padding: calc(1em - 1px);
                                        width: 100%; 
                                        color: orange;  
                                        size: 100px;
                                        }
                                        """
                                        ):
                                        st.write('##\n\n##\n\n')
                                        st.markdown("""
                                            <style>
                                            .big-font {
                                                font-size:15px;
                                                width: 100%;
                                                text-align: center;
                                            }
                                            </style>
                                            """, unsafe_allow_html=True)
                                        st.markdown(f'<p class="big-font">🛈 There are total {len(st.session_state.pattern_list)} Number of Patterns Available. Please Select Pattern(s) for Matching Records</p>', unsafe_allow_html=True)
                                        st.write('##\n\n##\n\n')
                        
                        with tabb:
                            try:
                                edited_df= st.data_editor(st.session_state.data[(st.session_state.data[col].isna()) | (st.session_state.data[col] == '') | (st.session_state.data[col] == None)], num_rows="dynamic", column_config={
                col: st.column_config.TextColumn(
                    col,
                    width="medium",
                )
            }, key=f'miss_{col}')
                            except:
                                edited_df= st.data_editor(st.session_state.data[(st.session_state.data[col].isna()) | (st.session_state.data[col] == '') | (st.session_state.data[col] == None)], num_rows="dynamic", column_config={
                col: st.column_config.Column(
                    col,
                    width="medium",
                )
            }, key=f'miss_{col}')
                                
                            incol1,incol2, extra= st.columns([1.1,1.5,8])
                            with incol1:
                                #st.write(st.session_state[f'dtype_{col}'])
                                if st.session_state[f'dtype_{col}'] not in ['int64', 'float64/numeric']:
                                    def_fill = st.text_input("Default Autofill Value",key=f"def_fill_{col}")
                                autofill= st.button("Autofill", key=f"autofill_{col}")
    
                            if autofill:
                                if st.session_state[f'dtype_{col}'] not in ['int','float']:
                                    st.session_state.data[col] = st.session_state.data[col].astype('str').replace('', pd.NA).replace({None: pd.NA}).fillna(def_fill)
                                else:
                                    st.session_state.data[col] = st.session_state.data[col].replace({None: pd.NA}).fillna(method='ffill')
                                st.success("Column Autofilled. Please Review the Sidebar for updated status of the Dataframe.")
                                df_preview.write(st.session_state.data)
                            with incol2:
                                confirm= st.button("Confirm", key=f"Confirm_{col}")
                            if confirm:
                                st.session_state.data[col] = st.session_state.data[col].replace('', np.nan).replace({None: np.nan})
                                st.session_state.data = st.session_state.data.dropna(subset=[col])
                                st.session_state.data.update(edited_df)
                                st.session_state.data = pd.concat([st.session_state.data, edited_df[~edited_df.index.isin(st.session_state.data.index)]])
                                st.session_state.data= st.session_state.data.sort_index()
                                st.success("State Saved. Please Review the Sidebar for updated status of the Dataframe.")
                                df_preview.write(st.session_state.data)
                        with tabe:  
                            if "overall_invalid_df" not in st.session_state:
                                st.session_state.overall_invalid_df = pd.DataFrame()
                            if (st.session_state[f'dtype_{col}'] not in ['email', 'phone_number'] and st.session_state.flag not in ['email', 'phone_number']):
                                st.dataframe(st.session_state.data)
                                AI_check= st.button("Check For Anomalies", key= f'AI_CHECK_{col}')
                                if AI_check:
                                    with st.spinner("Running Anomaly Detection AI"):
                                        #my_bar = st.progress(0, text="Progress")
                    
                                        if st.session_state[f'dtype_{col}'] in ['categorical/string']:
                                            if 'missing@123' not in st.session_state.data[col].cat.categories:
                                                st.session_state.data[col] = st.session_state.data[col].cat.add_categories(['missing@123'])
                        
                                        st.session_state.data[col] = st.session_state.data[col].fillna('missing@123').astype(str)
                                        st.session_state.data_encoded = st.session_state.data[col].apply(convert_to_special_representation)
                                        mixed_transformer = Pipeline(steps=[
                                            ('vectorizer', CountVectorizer(analyzer='char', lowercase=False))
                                        ])
                                        
                                        df_transformed = mixed_transformer.fit_transform(st.session_state.data_encoded)
                                        
                                        input_dim = df_transformed.shape[1]
                                        encoding_dim = (input_dim // 2) + 1
                                        
                                        input_layer = Input(shape=(None, input_dim))
                                        conv1d_layer = Conv1D(64, 3, activation='relu', padding='same')(input_layer)
                                        maxpooling_layer = MaxPooling1D(pool_size=2, padding='same')(conv1d_layer)
                                        encoder_lstm = Bidirectional(LSTM(encoding_dim, activation='relu', return_sequences=False))(maxpooling_layer)
                                        
                                        repeat_vector = RepeatVector(input_dim)(encoder_lstm)
                                        decoder_lstm = Bidirectional(LSTM(encoding_dim, activation='relu', return_sequences=True))(repeat_vector)
                                        conv1d_layer_decoder = Conv1D(64, 3, activation='relu', padding='same')(decoder_lstm)
                                        upsampling_layer = Conv1D(input_dim, 2, activation='relu', padding='same')(conv1d_layer_decoder)
                                        
                                        autoencoder = Model(inputs=input_layer, outputs=upsampling_layer)
                                        
                                        autoencoder.compile(optimizer=Adam(), loss=MeanSquaredError())
                                        #my_bar.progress(40, text='Progress')
                                        autoencoder.fit(np.expand_dims(df_transformed.toarray(), axis=1), np.expand_dims(df_transformed.toarray(), axis=1), 
                                                        epochs=100, batch_size=2, shuffle=True, validation_split=0.2, verbose=1)
                                        reconstructions = autoencoder.predict(np.expand_dims(df_transformed.toarray(), axis=1))
                                        reconstruction_error = np.mean(np.abs(reconstructions - np.expand_dims(df_transformed.toarray(), axis=1)), axis=(1, 2))
                                        
                                        threshold = np.percentile(reconstruction_error, 95)  # Adjust the percentile based on desired sensitivity
                                        #my_bar.progress(90, text='Progress')
                                        st.session_state.data['Validity'] = ['Invalid' if error > threshold else 'Valid' for error in reconstruction_error]
                                        st.session_state.data[col] = st.session_state.data[col].replace('missing@123', '')
                                        st.session_state[f"invalid_ai_data_{col}"]= st.session_state.data[st.session_state.data['Validity']== 'Invalid']
                                        #my_bar.progress(100, text='Progress')
                    
                                    if f"invalid_ai_data_{col}" in st.session_state:
                                        st.session_state[f"invalid_ai_data_{col}"]["Invalid Field"] = col
                                        if 'Validity' in st.session_state[f"invalid_ai_data_{col}"].columns:
                                            st.session_state.overall_invalid_df = pd.concat([st.session_state.overall_invalid_df, st.session_state[f"invalid_ai_data_{col}"].drop(['Validity'], axis=1)], ignore_index=True)
                                        else:
                                            st.session_state.overall_invalid_df = pd.concat([st.session_state.overall_invalid_df, st.session_state[f"invalid_ai_data_{col}"]], ignore_index=True)
                                            
                                    try:
                                        edited_valid_df= st.data_editor(st.session_state[f"invalid_ai_data_{col}"], num_rows="dynamic",column_config={
                    col: st.column_config.TextColumn(
                        col,
                        width="medium",
                    )
                }, key=f'Valid_{col}')
                                    except:
                                        edited_valid_df= st.data_editor(st.session_state[f"invalid_ai_data_{col}"], num_rows="dynamic",column_config={
                    col: st.column_config.Column(
                        col,
                        width="medium",
                    )
                }, key=f'Valid_{col}')
                                    valid = st.button("Confirm", key=f"Fix_valid_{col}")
                                    #my_bar.empty()
                                    if valid:
                                        st.session_state.data= st.session_state.data.drop(st.session_state.data[st.session_state.data['Validity'] == 'Invalid'].index)
                                        st.session_state.data = pd.concat([st.session_state.data, edited_valid_df])
                                        st.session_state.data= st.session_state.data.sort_index()
                                        df_preview.write(st.session_state.data)
                            
                            
                            
                                
                            elif  (st.session_state[f'dtype_{col}'] in ['phone_number'] or  st.session_state.flag in ['phone_number']  ):
                                #st.dataframe(st.session_state.data)
                                phone_regex =  r'^\+?[0-9\s\-\(\)]+$'
                               # st.write(phone_regex)
                                st.session_state.data['Validity_phone'] = st.session_state.data[col].apply(lambda xy: 'phone_is_valid' if re.match(phone_regex,str(xy)) else 'phone_is_invalid')
                                st.session_state[f'invalid_phone_{col}']= st.session_state.data[st.session_state.data['Validity_phone'] == 'phone_is_invalid'].drop(['Validity_phone'], axis=1)
                                if f'invalid_phone_{col}_check' not in st.session_state:
                                    st.session_state[f'invalid_phone_{col}']["Invalid Field"] = col
                                    st.session_state.overall_invalid_df = pd.concat([st.session_state.overall_invalid_df, st.session_state[f'invalid_phone_{col}']], ignore_index=True, axis=0)
                                    st.session_state[f'invalid_phone_{col}_check'] = 'yes'
                                try:
                                    edited_valid_df= st.data_editor(st.session_state.data[st.session_state.data['Validity_phone'] == 'phone_is_invalid'], column_config={
                col: st.column_config.TextColumn(
                    col,
                    width="medium",
                )
            }, num_rows="dynamic", key=f'Valid_phone_{col}')
                                except:
                                    edited_valid_df= st.data_editor(st.session_state.data[st.session_state.data['Validity_phone'] == 'phone_is_invalid'], column_config={
                col: st.column_config.Column(
                    col,
                    width="medium",
                )
            }, num_rows="dynamic", key=f'Valid_phone_{col}')
                                valid_phone = st.button("Confirm", key=f"Fix_valid_phone_{col}")
                                if valid_phone:
                                    st.session_state.data= st.session_state.data.drop(st.session_state.data[st.session_state.data['Validity_phone'] == 'phone_is_invalid'].index)
                                    st.session_state.data = pd.concat([st.session_state.data, edited_valid_df])
                                    st.session_state[f'invalid_ph_{col}']= st.session_state.data[st.session_state.data['Validity_phone'] == 'phone_is_invalid'].drop(['Validity_phone'], axis=1)
                                    st.session_state.data = st.session_state.data.drop(['Validity_phone'], axis=1)
                                    
                                    df_preview.write(st.session_state.data)
                
                            elif (st.session_state[f'dtype_{col}'] in ['email'] or st.session_state.flag in ['email']):
                                email_regex = r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'
                                st.session_state.data['Validity_email'] = st.session_state.data[col].apply(lambda x: 'email_is_valid' if re.match(email_regex, x) else 'email_is_invalid')
                                if st.session_state.data[col].dtype.name == 'category':
                                    st.session_state.data[col] = st.session_state.data[col].astype('str')
                                st.session_state[f'invalid_email_{col}']= st.session_state.data[st.session_state.data['Validity_email'] == 'email_is_invalid'].drop(['Validity_email'], axis=1)
                                if f'invalid_email_{col}_check' not in st.session_state:
                                    st.session_state[f'invalid_email_{col}']["Invalid Field"] = col
                                    st.session_state.overall_invalid_df = pd.concat([st.session_state.overall_invalid_df, st.session_state[f'invalid_email_{col}']], ignore_index=True, axis=0)
                                    st.session_state[f'invalid_email_{col}_check'] = 'yes'
                                try:
                                    edited_valid_df= st.data_editor(st.session_state.data[st.session_state.data['Validity_email'] == 'email_is_invalid'], num_rows="dynamic", column_config={
                col: st.column_config.TextColumn(
                    col,
                    width="medium",
                )
            }, key=f'Valid_email_{col}')
                                except:
                                    edited_valid_df= st.data_editor(st.session_state.data[st.session_state.data['Validity_email'] == 'email_is_invalid'], num_rows="dynamic", column_config={
            col: st.column_config.Column(
                col,
                width="medium",
            )
        }, key=f'Valid_email_{col}')
                                valid_email = st.button("Confirm", key=f"Fix_valid_email_{col}")
                                if valid_email:
                                    st.session_state.data= st.session_state.data.drop(st.session_state.data[st.session_state.data['Validity_email'] == 'email_is_invalid'].index)
                                    st.session_state.data = pd.concat([st.session_state.data, edited_valid_df])
                                    st.session_state[f'invalid_em_{col}']= st.session_state.data[st.session_state.data['Validity_email'] == 'email_is_invalid'].drop(['Validity_email'], axis=1)
                                    st.session_state.data = st.session_state.data.drop(['Validity_email'], axis=1)
                                    df_preview.write(st.session_state.data)
            
                        
                            
                    
                    with scol2:
                        st.markdown("**Column Being Processed**")
                        col_view= st.empty()
                        try:
                            col_view.write(st.session_state.data[col])
                        except:
                            st.warning("DataFrame Updated. But Could Not Load Preview")
        
        pkcol1, pkcol2=st.columns(2)
        with pkcol1:
            if primary_key != None:
                    st.info(f"Primary Key Identified by AI: {primary_key}")
            else:
                st.warning("Could Not Finalize the Primary Key Automatically. Please go through the suggestions and Finalize one.")
        with pkcol2:
            st.selectbox("Please Finalize the Primary Key:", sugg_primary_keys, index= default_index)
    
        with st.expander("Save and Download Data"):
            name_data= st.text_input("Please Specify Name of the saved/downloaded data")
            csv = st.session_state.data.to_csv(index=False).encode('utf-8')
            for col in ['Validity', 'Validity_email', 'Validity_phone']:
                if col in st.session_state.overall_invalid_df:
                   st.session_state.overall_invalid_df = st.session_state.overall_invalid_df.drop([col], axis=1)
            csv2 = st.session_state.overall_invalid_df.to_csv(index=False).encode('utf-8')
            #st.write(st.session_state.overall_invalid_df)
            # Create a download button
            dldcol1, dldcol2= st.columns([1,4])
            with dldcol1:
                st.download_button(
                    label="Download Cleaned Data as CSV",
                    data=csv,
                    file_name=f'{name_data}.csv',
                    mime='text/csv',
                )
            with dldcol2:
                st.download_button(
                    label="Download Anomalous Data as CSV",
                    data=csv2,
                    file_name=f'Anomaly_{name_data}.csv',
                    mime='text/csv',
                )
            save = st.button("Save Data For Further Processing")
            if save:
                connection_string = (   'SERVER=sql-ext-dev-uks-001.database.windows.net;'
                                        'DATABASE=sqldb-ext-dev-uks-001;'
                                        'UID=dbadmin;'
                                        'PWD=mYpa$$w0rD'
                                    )
                st.session_state.data = st.session_state.data.astype(str)
                load_dataframe_to_sqlserver(st.session_state.data, f'[dbo].[PROFILED_{name_data}]', connection_string)

######
if __name__ == '__main__':
    main()