File size: 77,122 Bytes
178a2f5 e903cd2 178a2f5 5188bdb ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 e903cd2 ba3fa23 e903cd2 ba3fa23 e903cd2 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 e903cd2 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 178a2f5 ba3fa23 5188bdb ba3fa23 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 178a2f5 e903cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 |
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import regex as re
import streamlit as st
import pyodbc
import datetime
import google.generativeai as genai
import textwrap
import json
from streamlit_extras.stateful_button import button
from streamlit_extras.stylable_container import stylable_container
import sdv
from sdv.metadata import MultiTableMetadata
from collections import defaultdict
import pymssql
############
from streamlit_app import sidebar
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
# Create a GenerativeModel instance
model = genai.GenerativeModel(
model_name='models/gemini-1.5-flash'
)
st.set_page_config(page_title='AUTOMATED SOURCE TO TARGET MAPPING', layout= 'wide')
st.markdown("""
<style>
/* Remove blank space at top and bottom */
.block-container {
padding-top: 1.9rem;
padding-bottom: 1rem;
}
/* Remove blank space at the center canvas */
.st-emotion-cache-z5fcl4 {
position: relative;
top: -62px;
}
/* Make the toolbar transparent and the content below it clickable */
.st-emotion-cache-18ni7ap {
pointer-events: none;
background: rgb(255 255 255 / 0%)
}
.st-emotion-cache-zq5wmm {
pointer-events: auto;
background: rgb(255 255 255);
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
def read_excel(path, sheet):
df = pd.read_excel(path, sheet_name = sheet, dtype = 'str')
return df
def split_join_condition(join_condition):
conditions = []
condition = ''
bracket_count = 0
for char in join_condition:
if char == '(':
bracket_count += 1
elif char == ')':
bracket_count -+ 1
if char == ',' and bracket_count == 0:
conditions.append(condition.strip())
condition = ''
else:
condition += char
if condition:
conditions.append(condition.strip())
return conditions
def join_incr(join_conditions):
join = []
join_pattern = re.compile(r'(\w+\.\w+)\s*=\s*(\w+\w.\w+)', re.IGNORECASE)
for join_condition in join_conditions:
parts = re.split(r'\sAND\s|\sOR\s', join_condition, flags = re.IGNORECASE)
temp = [x.strip() for x in parts if join_pattern.match(x.strip())]
join.append(' AND '.join(temp))
return join
def generate_sql(temp_table):
proc_query = []
base_table = None
source_table_schema = 'MAIN.GOLD'
temp_table_schema = 'MAIN.GOLD'
base_pk = []
join_fields = set()
for _,row in df.iterrows():
source_table = row['Source Table']
primary_key = row['Primary Key']
source_column = row['Source Column']
alias = row['Alias']
joining_keys = row['Joining Keys']
if not base_table:
if primary_key == 'Y':
base_table = source_table
base_pk.append(joining_keys)
if pd.notna(joining_keys):
keys = [x.strip() for x in joining_keys.split(',')]
for x in keys:
if x not in join_fields:
join_fields.add(x)
unique_cols = ['Source Table', 'Joining Keys', 'Primary Key', 'Join Type','Join Tables','Join Condition']
unique_df = df.drop_duplicates(subset = unique_cols)
incremantal_mapping = {}
incr_joins = {}
for _,row in unique_df.iterrows():
source_table = row['Source Table']
source_column = row['Source Column']
joining_keys = row['Joining Keys']
primary_key = row['Primary Key']
direct_derived = row['Direct/Derived']
join_type = row['Join Type']
join_tables = row['Join Tables']
join_condition = row['Join Condition']
if source_table == base_table:
if primary_key == 'Y':
key = (source_table, joining_keys, join_type, join_tables, join_condition)
key1 = source_table
else:
continue
else:
key = (source_table, joining_keys, join_type, join_tables, join_condition)
key1 = source_table
if pd.notna(direct_derived) and pd.notna(source_table) and pd.notna(source_column):
if key not in incremantal_mapping:
incremantal_mapping[key] = {
'source_table': source_table,
'joining_keys':joining_keys,
'join_type': join_type,
'join_tables': join_tables,
'join_condition': join_condition
}
if key1 not in incr_joins:
if pd.notna(direct_derived) and direct_derived == 'DERIVED':
incr_joins[key1] = {
'join_type': join_type,
'join_tables': ', '.join([x.strip() for x in join_tables.split(',') if x != base_table]),
'join_condition': join_condition
}
incremental_df = pd.DataFrame(incremantal_mapping.values())
incr_join_grps = incremental_df.groupby(['source_table'])
proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.{temp_table}_INCR;')
incr_table_join_info = {}
for _,row in incremental_df.iterrows():
source_table = row['source_table']
if source_table != base_table:
joining_keys = row['joining_keys']
join_type = row['join_type']
join_tables = [x.strip() for x in row['join_tables'].split(',')]
index = join_tables.index(source_table)
join_condition = [x.strip() for x in row['join_condition'].split(',')][0:index]
incr_table_join_info[source_table] = ', '.join(join_condition)
incr_query = []
incr_cols = ''
incr_tables = []
incr_join = {}
for _, group in incr_join_grps:
for table in _.split():
if base_table != table:
join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')]
join_keys = [t.strip() for t in ','.join(base_pk).split(',')]
join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')]
join_cond = split_join_condition(incr_table_join_info[table])
join_condition = join_incr(join_cond)
source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
join_key_list = []
for x in join_keys:
join_key_list.append(f'{base_table}.{x}')
join_key = ', '.join(join_key_list)
for y in source_table:
sql = f"""
INSERT INTO {temp_table_schema}.{temp_table}_INCR
(
SELECT {join_key}, {table_details_mapping[y][0]}, {table_details_mapping[y][1]}, '{y}', 1, CURRENT_TIMESTAMP
FROM {source_table_schema}.{base_table} {base_table}"""
incr_join_text = ''
for i in range(len(join_condition)):
sql += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
incr_join_text += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
incr_join[y] = incr_join_text
sql += f"""
WHERE COALESCE({join_tables[i+1]}.operation,'NA') <> 'D'
AND TO_TIMESTAMP( CAST(SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),1,4) || '-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),5,2) ||'-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),7,2) || ' ' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),9,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),11,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS') > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{y}')
);"""
incr_query.append(sql)
incr_tables.append(y)
else:
source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')]
join_key_list = []
for x in join_keys:
join_key_list.append(f'{base_table}.{x}')
join_key = ', '.join(join_key_list)
incr_cols = join_key
sql = f"""
INSERT INTO {temp_table_schema}.{temp_table}_INCR
(
SELECT {join_key}, {table_details_mapping[base_table][0]}, {table_details_mapping[base_table][1]}, '{base_table}', 1, CURRENT_TIMESTAMP
FROM {source_table_schema}.{base_table} {base_table}
WHERE COALESCE(operation,'NA') <> 'D'
AND TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS') > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{base_table}')
);"""
proc_query.append(sql)
incr_tables.append(base_table)
proc_query.append('\n'.join(incr_query))
proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.INCR1_{temp_table};')
sql = f"""
INSERT INTO {temp_table_schema}.INCR1_{temp_table}
(
SELECT DISTINCT {incr_cols.replace(f'{base_table}.', '')}
FROM {temp_table_schema}.{temp_table}_INCR
);"""
proc_query.append(sql)
incr_table_dict = {}
for table in incr_tables:
if table == base_table:
incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}'
else:
p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
if len(p) == 1:
incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}'
else:
incr_table_dict[table] = f'{source_table_schema}.{table}'
s = []
for table in incr_tables:
incr2_sql_list = []
if table == base_table:
for key in incr_cols.replace(f'{base_table}.', '').split(','):
incr2_sql_list.append(f"{base_table}.{key} = A.{key}")
incr2_sql_join = ' AND '.join(incr2_sql_list)
sql = f"""
CREATE TABLE {temp_table_schema}.INCR2_{table}
AS
SELECT
{table}.*
FROM
{source_table_schema}.{table} {table}
INNER JOIN
{temp_table_schema}.INCR1_{temp_table} A ON {incr2_sql_join}; """
proc_query.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};')
proc_query.append(sql)
else:
p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
if len(p) == 1:
sql = f"""
CREATE TABLE {temp_table_schema}.INCR2_{table}
AS
SELECT
{table}.*
FROM
{temp_table_schema}.INCR2_{base_table} {base_table} {incr_join[table]};"""
s.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};')
s.append(sql)
for x in s:
proc_query.append(x)
select_clause = []
from_clause = []
where_clause = []
for _,row in df.iterrows():
field_name = row['Field_Name']
source_table = row['Source Table']
source_column = row['Source Column']
joining_keys = row['Joining Keys']
primary_key = row['Primary Key']
direct_derived = row['Direct/Derived']
join_type = row['Join Type']
join_tables = row['Join Tables']
join_condition = row['Join Condition']
column_operation = row['Column Operations']
alias = row['Alias']
granularity = row['Granularity']
filter_condition = row['Filter Condition']
clauses = row['Clauses']
ordering = row['Ordering']
if pd.notna(direct_derived):
if pd.notna(column_operation):
if len(column_operation.split()) == 1:
select_expr = f'{column_operation.upper()}({source_table}.{source_column})'
else:
select_expr = column_operation
else:
if pd.notna(source_table):
select_expr = f'{source_table}.{source_column}'
else:
select_expr = source_column
if source_column not in join_fields:
if pd.notna(alias):
select_expr += f' AS {alias}'
else:
if pd.notna(column_operation) and pd.notna(source_column):
select_expr += f' AS {source_column}'
if direct_derived.upper() == 'DIRECT':
select_clause.append(select_expr)
elif direct_derived.upper() == 'DERIVED_BASE':
select_clause.append(select_expr)
if pd.notna(filter_condition):
where_clause.append(filter_condition)
select_query = ',\n\t'.join(select_clause)
sql_query = f"CREATE TABLE {temp_table_schema}.{base_table}_BASE\nAS \n\tSELECT \n\t{select_query} \nFROM\n\t{incr_table_dict[base_table]} {base_table}"
if where_clause:
sql_query += f"\nWHERE {' AND'.join(where_clause)}"
sql_query += ';'
proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{base_table}_BASE;")
proc_query.append(sql_query)
df['Clauses'].fillna('', inplace = True)
df['Ordering'].fillna('', inplace = True)
c = 1
temp_base_table = f'{base_table}_BASE'
grp_cols = ['Join Condition', 'Clauses', 'Ordering']
join_grps = df[df['Direct/Derived'] == 'DERIVED'].groupby(['Join Condition', 'Clauses', 'Ordering'])
temp_tables_sql = []
for (join_condition,clauses,ordering), group in join_grps:
if pd.notna(group['Direct/Derived'].iloc[0]):
if group['Direct/Derived'].iloc[0].upper() == 'DERIVED':
join_tables = [t.strip() for t in group['Join Tables'].iloc[0].split(',')]
join_keys = [t.strip() for t in group['Joining Keys'].iloc[0].split(',')]
join_type = [t.strip() for t in group['Join Type'].iloc[0].split(',')]
join_condition = split_join_condition(group['Join Condition'].iloc[0])
temp_table_name = f"TEMP_{group['Source Table'].iloc[0]}"
source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')]
alias = [t.strip() for t in (','.join(group['Alias'])).split(',')]
source_table = [t.strip() for t in (','.join(group['Source Table'])).split(',')]
base_cols = []
for join_key in join_keys:
base_cols.append(f'{join_tables[0]}.{join_key}')
for s_table,col,alias in zip(source_table,source_column,alias):
if pd.notna(group['Column Operations'].iloc[0]):
if len(group['Column Operations'].iloc[0].split()) == 1:
select_expr = f"{group['Column Operations'].iloc[0].upper()}({s_table}.{col})"
else:
select_expr = group['Column Operations'].iloc[0]
else:
if pd.notna(s_table):
select_expr = f"{s_table}.{col}"
else:
select_expr = col
if alias:
select_expr += f" AS {alias}"
base_cols.append(select_expr)
if ordering:
base_cols.append(f"{ordering} AS RN")
sql = ',\n\t\t'.join(base_cols)
join_sql = f"SELECT \n\t\t{sql} \nFROM\n\t{incr_table_dict[base_table]} {join_tables[0]}"
for i in range(len(join_type)):
join_sql += f'\n\t{join_type[i]} JOIN {incr_table_dict[join_tables[i+1]]} {join_tables[i+1]} ON {join_condition[i]}'
if clauses:
join_sql += f'\n\t{clauses}'
join_sql += ';'
proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{temp_table_name};")
proc_query.append(f"CREATE TABLE {temp_table_schema}.{temp_table_name}\nAS \n\t{join_sql}")
granularity = [t.strip() for t in group['Granularity'].iloc[0].split(',')]
sql = []
for key in join_keys:
sql.append(f"A.{key} = B.{key}")
temp_cols = []
temp_cols.append('A.*')
source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')]
alias = [t.strip() for t in (','.join(group['Alias'])).split(',')]
for col,alias in zip(source_column,alias):
select_expr = f"B.{col}"
if alias:
select_expr = f"B.{alias}"
else:
select_expr = f"B.{col}"
temp_cols.append(select_expr)
temp_select_query = ',\n\t\t'.join(temp_cols)
proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.TEMP_{temp_table}_{c};")
base_sql = f"CREATE TABLE {temp_table_schema}.TEMP_{temp_table}_{c}\nAS \n\tSELECT \n\t\t{temp_select_query} \nFROM\n\t{temp_table_schema}.{temp_base_table} AS A"
base_sql += f"\n\tLEFT OUTER JOIN {temp_table_schema}.{temp_table_name} B ON {' AND '.join(sql)}"
if '1:1' in granularity and len(ordering) > 1:
base_sql += f" AND B.RN = 1"
base_sql += ';'
temp_base_table = f'TEMP_{temp_table}_{c}'
c += 1
proc_query.append(base_sql)
fin_table_name = temp_table
fin_table_cols = []
for _,row in df.iterrows():
field_name = row['Field_Name']
source_table = row['Source Table']
source_column = row['Source Column']
alias = row['Alias']
if pd.notna(row['Direct/Derived']):
if (source_column in join_fields):
fin_table_cols.append(f'{source_column} AS "{field_name}"')
else:
fin_table_cols.append(f'"{field_name}"')
fin_table_cols = ',\n\t\t'.join(fin_table_cols)
fin_sql = f"INSERT INTO {temp_table_schema}.{fin_table_name}\n\tSELECT \n\t\t{fin_table_cols} \nFROM\n\t{temp_table_schema}.TEMP_{temp_table}_{c-1};"
condition_col = '_'.join(incr_cols.replace(f'{base_table}.', '').split(','))
proc_query.append(f"DELETE FROM {temp_table_schema}.{fin_table_name}\nWHERE {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} IN (SELECT {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} FROM {temp_table_schema}.INCR1_{temp_table});")
proc_query.append(fin_sql)
for table in incr_tables:
sql = f"""
INSERT INTO audit.reportingdb_audit_tbl_{temp_table}
(
SELECT
'{temp_table}' as mart_table_name,
'{table}' as src_table_name,
coalesce( max(TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS')),(select max(max_update_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) max_update_date,
CURRENT_TIMESTAMP as load_timestamp,
coalesce(max(prev_updt_ts),(select max(source_reference_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) AS source_reference_date,
max(nvl(batch_number,0))+1
FROM {temp_table_schema}.{temp_table}_INCR where table_name = '{table}'
);"""
proc_query.append(sql)
return base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema
def create_df(query, table_df_mapping, table_usage_count):
script = []
query = ' '.join(query.split()).strip()
match = re.match(r'CREATE TABLE (\w+\.\w+\.\w+) AS (SELECT .+)', query, re.IGNORECASE)
source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
source_tables = [table for pair in source_tables for table in pair if table]
if not match:
raise ValueError('Invalid SQL')
table_name = match.group(1).split('.')[2]
select_statement = match.group(2)
create_script = f'{table_name} = spark.sql(""" {select_statement} """)'
persist_script = f'{table_name} = {table_name}.persist()'
view_script = f'{table_name}.createOrReplaceTempView("{table_name}")'
for table in source_tables:
create_script = create_script.replace(table, table_df_mapping[table])
script.append(f"\n\t\t######################---------Creating table {create_script.split('=')[0].strip()}-------############################")
script.append(create_script)
script.append(persist_script)
script.append(view_script)
script.append(f'''print("{create_script.split('=')[0].strip()} count: ", {create_script.split('=')[0].strip()}.count()''')
if 'INCR2_' in table_name:
x = table_name.split('INCR2_')[1]
if x in table_details_mapping.keys():
script.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################")
script.append(f"{x}_max_update_date = INCR2_{x}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]")
script.append(f"{x}_max_source_reference_date = INCR2_{x}.agg(max(to_timestamp('{table_details_mapping[x][1].replace(x+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]")
script.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{x}',{x}_max_update_date,{x}_max_source_reference_date, max_batch_id, config)")
script.append('\n')
for table in source_tables:
table_usage_count[table.split('.')[2]] -= 1
for table in source_tables:
if table_usage_count[table.split('.')[2]] == 0 and 'INCR1_' not in table:
unpersist_script = f"{table.split('.')[2]}.unpersist()"
script.append(unpersist_script)
return '\n\t\t'.join(script)
def generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema):
table_usage_count = defaultdict(int)
table_df_mapping = {}
for query in proc_query:
if 'CREATE TABLE' or 'DELETE' in query:
source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
source_tables = [table for pair in source_tables for table in pair if table]
for table in source_tables:
table_usage_count[table.split('.')[2]] += 1
if 'DELETE' not in query:
table_df_mapping[table] = table.split('.')[2]
script = []
for query in proc_query:
if 'CREATE TABLE' in query:
script.append(create_df(query, table_df_mapping,table_usage_count))
spark_query = []
spark_query.append("\t\t######################---------Reading source data -------############################")
for table in table_details_mapping.keys():
spark_query.append(f'{table} = read_file(spark, config, \"{table}\").filter("{table_details_mapping[table][2]}")')
spark_query.append(f'{table} = {table}.persist()')
spark_query.append(f'{table}.createOrReplaceTempView("{table}")')
spark_query.append(f'print("{table} count: ", {table}.count()')
spark_query.append('\n')
spark_query.append("\n\t\t######################---------Reading records-------############################")
for table in table_details_mapping.keys():
spark_query.append(f"{table}_max_update_date = read_max_update_date(redshift_conn, config['application_name'],'{table}', config)")
spark_query.append(f'{table}_max_update_date = {table}_max_update_date[0][0]')
spark_query.append('\n')
incr1_spark = []
temp_incr1 = []
for _, group in incr_join_grps:
for table in _.split():
if base_table != table:
join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')]
join_keys = [t.strip() for t in ','.join(base_pk).split(',')]
join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')]
join_cond = split_join_condition(incr_table_join_info[table])
join_condition = join_incr(join_cond)
source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
join_key_list = []
for x in join_keys:
join_key_list.append(f'{base_table}.{x}')
join_key = ', '.join(join_key_list)
for y in source_table:
sql = f"""SELECT {join_key} FROM {base_table} {base_table}"""
incr_join_text = ''
i=0
for i in range(len(join_condition)):
sql += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
incr_join_text += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
sql += f''' WHERE {join_tables[i+1]}._hoodie_commit_time > cast('"""+str({join_tables[i+1]}_max_update_date)+"""' as timestamp)'''
temp_incr1.append(sql)
else:
source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')]
join_key_list = []
for x in join_keys:
join_key_list.append(f'{base_table}.{x}')
join_key = ', '.join(join_key_list)
sql = f'''SELECT {join_key} FROM {base_table} {base_table} WHERE {base_table}._hoodie_commit_time > cast('"""+str({base_table}_max_update_date)+"""' as timestamp)'''
incr1_spark.append(sql)
for i in temp_incr1:
incr1_spark.append(i)
incr1_spark = '\nUNION\n'.join(incr1_spark)
spark_query.append("\n\t\t######################---------Creating INCR1-------############################")
spark_query.append(f'INCR1_{temp_table} = spark.sql(""" {incr1_spark} """)')
spark_query.append(f'\n\t\tINCR1_{temp_table} = INCR1_{temp_table}.dropDuplicates()')
spark_query.append(f'INCR1_{temp_table} = INCR1_{temp_table}.persist()')
spark_query.append(f'INCR1_{temp_table}.createOrReplaceTempView("INCR1_{temp_table}")')
spark_query.append(f'print("INCR1_{temp_table} count: ", INCR1_{temp_table}.count())')
spark_query.append("\n\t\t######################---------Creating INCR2-------############################")
for table in table_details_mapping.keys():
if table in incr_join.keys():
p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
if len(p) > 1:
spark_query.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################")
spark_query.append(f"{table}_max_update_date = {table}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]")
spark_query.append(f"{table}_max_source_reference_date = {table}.agg(max(to_timestamp('{table_details_mapping[table][1].replace(table+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]")
spark_query.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{table}',{table}_max_update_date,{table}_max_source_reference_date, max_batch_id, config)")
spark_query.append('\n')
for query in script:
spark_query.append(query)
spark_query.append('\n')
spark_query1 = []
spark_query1.append('\n')
for query in proc_query:
if f'{temp_table_schema}.{temp_table}\n' in query:
final_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
final_tables = [table.split('.')[2].strip() for pair in final_tables for table in pair if table and table.split('.')[2].strip() != temp_table][0]
if 'INCR1_' in final_tables:
spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['incr2df_path'])")
else:
spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['resultdf_path'])")
spark_query1.append(f'''cur.execute(""" {query} """)''')
spark_query1.append('\n')
with open('template.txt') as file:
template = file.read()
result = template.replace('INSERT_CODE_1', '\n\t\t'.join(spark_query))
result = result.replace('INSERT_CODE_2', '\t\t'.join(spark_query1))
return result
# st.set_page_config(page_title='AUTOMATED SOURCE TO TARGET MAPPING', layout= 'wide')
# st.markdown("""
# <style>
# /* Remove blank space at top and bottom */
# .block-container {
# padding-top: 1.9rem;
# padding-bottom: 1rem;
# }
# /* Remove blank space at the center canvas */
# .st-emotion-cache-z5fcl4 {
# position: relative;
# top: -62px;
# }
# /* Make the toolbar transparent and the content below it clickable */
# .st-emotion-cache-18ni7ap {
# pointer-events: none;
# background: rgb(255 255 255 / 0%)
# }
# .st-emotion-cache-zq5wmm {
# pointer-events: auto;
# background: rgb(255 255 255);
# border-radius: 5px;
# }
# </style>
# """, unsafe_allow_html=True)
######
def main():
# st.title('PAGE TITLE') # Change this for each page
sidebar()
########
st.subheader('AUTOMATED SOURCE TO TARGET MAPPING')
mode= st.selectbox('Select Mode of Mapping',('Supervised Mapping(You Have Sufficient Sample Data in Target Template)', 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)'), index=None,placeholder='Select category of table')
if mode == 'Supervised Mapping(You Have Sufficient Sample Data in Target Template)':
conn = pymssql.connect( "Server=sql-ext-dev-uks-001.database.windows.net;"
"Database=sqldb-ext-dev-uks-001;"
"UID=dbadmin;"
"PWD=mYpa$$w0rD" )
query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC"
table1=pd.read_sql_query(query1,con=conn)
st.session_state.table1_un= table1
table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str')
colsel1, colsel2= st.columns(2)
with colsel1:
table_selector=st.selectbox('SOURCE TABLE NAME',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],index=None,placeholder='Select table for automated column mapping')
with colsel2:
target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAAPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table')
st.session_state.target_selector_un = target_selector
#migrate_opt=st.toggle('DO YOU ALSO WANT TO MIGRATE DATA TO TARGET TABLE')
if table_selector is not None and target_selector is not None:
btn=button('RUN',key='RUN_GENAI_UN')
if target_selector is not None and btn and f'{table_selector}_{target_selector}_map_un' not in st.session_state:
query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+table_selector+"]"
i_df = pd.read_sql_query(query2,con=conn)
# conn.close()
i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
st.session_state['source_data_un'] = i_df
#st.markdown('---')
# st.subheader('Souce Data Preview')
# st.dataframe(i_df)
query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]"
tgt_df=pd.read_sql_query(query3,con=conn).reset_index(drop=True)
main_list=tgt_df.columns.to_list()
sub_list=['ID','LOADID','FILE_NAME']
if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
st.session_state.opt_un= list(tgt_df.columns)
st.session_state['target_data_un'] = tgt_df.head(20).reset_index()
# if tgt:
# # st.subheader('Target Table Preview')
# # st.write(tgt_df.sample(20).reset_index(drop=True))
# # st.markdown('---')
with st.spinner('Running data on neural network...'):
df=pd.read_csv('C:\\Applications\\MARCO POLO O AIML\\DATA CATALOG\\pages\\CUSTOMER_MASTER_TRAIN_1306.csv') #POLICY
cols=df.columns.tolist()
data=pd.DataFrame(columns=['DATA','LABEL'])
temp=pd.DataFrame(columns=['DATA','LABEL'])
for x in cols:
temp['DATA']=df[x]
temp['LABEL']=x
data=pd.concat([data,temp],ignore_index=True)
data['DATA']=data['DATA'].astype('string')
data['LABEL']=data['LABEL'].astype('string')
data=data.dropna()
data=data.reset_index(drop=True)
#FEATURE_EXTRACTION BAG OF CHARACTERS
vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(1, 3), min_df=1)
X=vectorizer.fit_transform(data['DATA'])
feature=pd.DataFrame(data=X.toarray(),columns=vectorizer.get_feature_names_out())
data1=pd.concat([data,feature],axis=1)
#FEATURE_SELECTION
from sklearn.feature_selection import chi2
chi_x=data1.drop(['DATA','LABEL'],axis=1)
chi_y=data1['LABEL']
chi_scores=chi2(chi_x,chi_y)
p_values=pd.Series(chi_scores[1],index=chi_x.columns)
p_values=p_values.sort_values(ascending=True).reset_index()
feature_chi=p_values['index'][:1000]
data2=data1[feature_chi.to_list()]
data2=pd.concat([data,data2],axis=1)
#FEATURE EXTRACTION GENERAL
def count_digits(str1):
return len("".join(re.findall("\d+", str1)))
def count_vowels(string):
vowels = "aeiouAEIOU"
count = 0
for char in string:
if char in vowels:
count += 1
return count
def count_special_character(string):
special_characters = "!@#$%^&*()-+?_=,<>/"
special_char = 0
for i in range(0, len(string)):
if (string[i] in special_characters):
special_char += 1
return special_char
def count_spaces(string):
spaces = 0
for char in string:
if char == " ":
spaces += 1
return spaces
data2['LENGTH']=data2['DATA'].apply(lambda x:len(x))
data2['digit_c']=data2['DATA'].apply(lambda x:count_digits(x))
data2['vowel_c']=data2['DATA'].apply(lambda x:count_vowels(x))
data2['spchar_c']=data2['DATA'].apply(lambda x:count_special_character(x))
data2['space_c']=data2['DATA'].apply(lambda x:count_spaces(x))
chi_scores1=chi2(data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']],data2['LABEL'])
p_values1=pd.Series(chi_scores1[1],index=data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']].columns).sort_values(ascending=True).reset_index()
#MODEL
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow import keras
from sklearn.model_selection import train_test_split
from ast import literal_eval
train_df, test_df = train_test_split(data2,test_size=.1,stratify=data2['LABEL'].values)
val_df = test_df.sample(frac=0.5)
test_df.drop(val_df.index, inplace=True)
terms = tf.ragged.constant(data2['LABEL'].values)
lookup = tf.keras.layers.StringLookup(output_mode="one_hot")
lookup.adapt(terms)
vocab = lookup.get_vocabulary()
def invert_multi_hot(encoded_labels):
hot_indices = np.argwhere(encoded_labels == 1.0)[..., 0]
return np.take(vocab, hot_indices)
max_seqlen = 150
batch_size = 128
padding_token = "<pad>"
auto = tf.data.AUTOTUNE
feature_tf=data2.columns.tolist()[2:]
def make_dataset(dataframe,feature,batch_size,is_train=True):
labels = tf.ragged.constant(dataframe["LABEL"].values)
label_binarized = lookup(labels).numpy()
dataset = tf.data.Dataset.from_tensor_slices(
(dataframe[feature].values, label_binarized)
)
dataset = dataset.shuffle(batch_size * 10) if is_train else dataset
return dataset.batch(batch_size)
train_dataset = make_dataset(train_df,feature_tf,batch_size, is_train=True)
validation_dataset = make_dataset(val_df,feature_tf,batch_size, is_train=False)
test_dataset = make_dataset(test_df,feature_tf,batch_size, is_train=False)
shallow_mlp_model = keras.Sequential(
[
layers.Dense(512, activation="relu"),
layers.Dense(256, activation="relu"),
layers.Dense(lookup.vocabulary_size(), activation="softmax"),
]
)
shallow_mlp_model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["CategoricalAccuracy"])
epochs=20
history = shallow_mlp_model.fit(train_dataset, validation_data=validation_dataset, epochs=epochs)
#MODEL TEST
_, category_acc = shallow_mlp_model.evaluate(test_dataset)
#INPUT PREPROCESSING
i_cols=i_df.columns
i_cols=i_df.columns.tolist()
i_data=pd.DataFrame(columns=['DATA','LABEL'])
i_temp=pd.DataFrame(columns=['DATA','LABEL'])
for x in i_cols:
i_temp['DATA']=i_df[x]
i_temp['LABEL']=x
i_data=pd.concat([i_data,i_temp],ignore_index=True)
i_data['DATA']=i_data['DATA'].astype('string')
i_data['LABEL']=i_data['LABEL'].astype('string')
i_data=i_data.dropna()
i_data=i_data.reset_index(drop=True)
i_X=vectorizer.transform(i_data['DATA'])
i_feature=pd.DataFrame(data=i_X.toarray(),columns=vectorizer.get_feature_names_out())
i_data1=pd.concat([i_data,i_feature],axis=1)
i_data2=i_data1[feature_chi.to_list()]
i_data2=pd.concat([i_data,i_data2],axis=1)
i_data2['LENGTH']=i_data2['DATA'].apply(lambda x:len(x))
i_data2['digit_c']=i_data2['DATA'].apply(lambda x:count_digits(x))
i_data2['vowel_c']=i_data2['DATA'].apply(lambda x:count_vowels(x))
i_data2['spchar_c']=i_data2['DATA'].apply(lambda x:count_special_character(x))
i_data2['space_c']=i_data2['DATA'].apply(lambda x:count_spaces(x))
i_run_dataset=tf.data.Dataset.from_tensor_slices((i_data2[feature_tf].values,lookup(tf.ragged.constant(i_data2["LABEL"].values)).numpy())).batch(649)
i_predicted_probabilities = shallow_mlp_model.predict(i_run_dataset)
i_predicted_labels = np.where(i_predicted_probabilities == i_predicted_probabilities.max(axis=1, keepdims=True), 1, 0)
i_predicted_label_df=pd.DataFrame(i_predicted_labels,columns=vocab)
i_predicted_label_df1=pd.concat([i_data,i_predicted_label_df],axis=1)
i_predicted_label_df1['PREDICTION']=i_predicted_label_df1[vocab].idxmax(axis=1)
i_result=i_predicted_label_df1[['DATA','LABEL','PREDICTION']]
column_mapping=pd.DataFrame(columns=['source','target'])
temp_column_mapping=pd.DataFrame(columns=['source','target'])
for i in i_df.columns.to_list():
temp_df1=i_result.loc[i_result['LABEL']==i]
temp_max=temp_df1['PREDICTION'].value_counts().idxmax()
temp_column_mapping.loc[0]=[i,temp_max]
column_mapping=pd.concat([column_mapping,temp_column_mapping],ignore_index=True)
not_null=i_df.count().reset_index()
tot_rows=i_df.shape[0]
not_null['not null percentage']=not_null[0]/tot_rows
coltobemodified=not_null[not_null['not null percentage']<.05]['index'].to_list()
column_mapping.loc[column_mapping['source'].isin(coltobemodified), 'target'] = '**TOO FEW COLUMN VALUES**'
st.success('Mapping completed successfully!')
st.session_state[f'{table_selector}_{target_selector}_map_un'] = column_mapping.copy()
# st.subheader('MAPPED COLUMN')
# st.dataframe(column_mapping)
if f'{table_selector}_{target_selector}_map_un' in st.session_state and btn:
taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview'])
with tabb:
st.subheader('Souce Data Preview')
with stylable_container(
key=f"source_container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
st.dataframe(st.session_state['source_data_un'])
with tabc:
st.subheader('Target Table Preview')
with stylable_container(
key=f"target_container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
st.write(st.session_state['target_data_un'])
with taba:
st.subheader("Mapping Generated:")
with stylable_container(
key=f"container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
edited_map_df = st.data_editor(
st.session_state[f'{table_selector}_{target_selector}_map_un'],
column_config={
"target": st.column_config.SelectboxColumn(
"Available Column Names",
help="Please Verify/Change the Target Column Mapping",
width="medium",
options=st.session_state.opt_un,
required=True,
)
},
hide_index=False,
num_rows = 'fixed',
use_container_width = True
)
val = button("Validate", key="Val_un")
if val:
st.session_state[f'{table_selector}_{target_selector}_map_un'].update(edited_map_df)
dup= len(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated()])
if dup != 0:
dup_index= list(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated(keep=False)].index)
dup_mess=str(dup_index[0])
for val in dup_index[1:]:
dup_mess = dup_mess + f' and {str(val)}'
st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}")
else:
st.success("Mapping Validated! You can proceed for Mapping")
migrate= st.button("Mapping")
if migrate:
st.subheader('Mapping PHASE')
m_queiry1="select count(*) as TARGET_COUNT_CURRENT from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]"
#st.write(m_queiry1)
old_count=pd.read_sql_query(m_queiry1,con=conn)
st.write('RECORDS IN TARGET TABLE BEFORE Mapping',old_count)
with st.spinner('Mapping in progress...'):
cursor1=conn.cursor()
q1='INSERT INTO ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+st.session_state.target_selector_un+'] ("'
q2=' select "'
for i,x in enumerate(st.session_state['source_data_un'].columns.values.tolist()):
t=st.session_state[f'{table_selector}_{target_selector}_map_un'].loc[st.session_state[f'{table_selector}_{target_selector}_map_un']['source']==x,'target'].values[0]
if i==len(st.session_state['source_data_un'].columns.values.tolist())-1:
q_temp1=t+'") '
q_temp2=x+'" '
else:
q_temp1=t+'", "'
q_temp2=x+'", "'
q1=q1+q_temp1
q2=q2+q_temp2
#q_temp='INSERT INTO ['+ table1['TABLE_SCHEMA'][0]+'].['+target_selector+'] ("'+t+'") select "'+x+'" from ['+ table1['TABLE_SCHEMA'][0]+'].['+table_selector+']'
# st.write(q)
q=q1+q2+' from ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+table_selector+']'
#st.write(q)
cursor1.execute(q)
conn.commit()
# m_query2="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET ID=9999 WHERE ID IS NULL"
# # cur_time=datetime.datetime.now().time().strftime("%Y%m%d%H%M%S")
# m_query3="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET LOADID='LOADEDBYAI' WHERE LOADID IS NULL"
# m_query4="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET FILE_NAME='AUTOMATED_INSERT' WHERE FILE_NAME IS NULL"
# cursor1.execute(m_query2)
# cursor1.execute(m_query3)
# cursor1.execute(m_query4)
# conn.commit()
st.success('Mapping completed successfully!')
m_query5="select count(*) as TARGET_COUNT_AFTER_Mapping from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]"
new_count=pd.read_sql_query(m_query5,con=conn)
conn.close()
st.write('RECORDS IN TARGET TABLE AFTER Mapping',new_count)
if mode == 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)':
conn = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;"
"Database=sqldb-ext-dev-uks-001;"
"UID=dbadmin;"
"PWD=mYpa$$w0rD" )
query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC"
table1=pd.read_sql_query(query1,con=conn)
st.session_state.table1= table1
table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str')
#col2sel1, col2sel2 = st.columns(2)
table_selector=st.multiselect('SOURCE TABLE NAME(S)',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],default=None,placeholder='Select table for automated column mapping')
#target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAPPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table')
target_selector = st.file_uploader("UPLOAD TARGET METADATA FILE", type=['csv'])
tgt_name=None
mapping_df=None
if target_selector is not None:
mapping_df = pd.read_csv(target_selector)
tgt_name = target_selector.name
required_columns = ['Field_Name', 'Primary Key']
if all(col in mapping_df.columns for col in required_columns):
field_names = mapping_df['Field_Name'].tolist()
tgt_df = pd.DataFrame(columns=field_names)
st.session_state.target_selector = target_selector
# mapping_selector = target_selector
# st.session_state.mapping_selector = mapping_selector
if mapping_df is not None:
st.session_state.mapping_df = mapping_df
if table_selector is not None:
if len(table_selector)==1:
query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+str(table_selector[0])+"]"
i_df = pd.read_sql_query(query2,con=conn)
# conn.close()
if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns):
i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
elif len(table_selector)>1:
dataframes = {}
col_names = []
for tab in table_selector:
query2_2= "select * from [dbo].["+tab+"]"
dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn)
col_names = col_names + list(dataframes[f'{tab}'].columns)
tab_names = table_selector
metadata = MultiTableMetadata()
metadata.detect_from_dataframes(
data= dataframes
)
multi_python_dict = metadata.to_dict()
rlist1=multi_python_dict['relationships']
relationships=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT PRIMARY KEY','CHILD FOREIGN KEY'])
for i in range(len(rlist1)):
rlist=rlist1[i]
nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT PRIMARY KEY':rlist['parent_primary_key'],'CHILD FOREIGN KEY':rlist['child_foreign_key']},index=[i])
relationships=pd.concat([relationships,nrow],ignore_index=True)
filtered_relationships = relationships[
(relationships['PARENT TABLE'].isin(table_selector)) &
(relationships['CHILD TABLE'].isin(table_selector))
]
i_df = pd.DataFrame()
for _, row in filtered_relationships.iterrows():
parent_table = row['PARENT TABLE']
child_table = row['CHILD TABLE']
parent_key = row['PARENT PRIMARY KEY']
child_key = row['CHILD FOREIGN KEY']
if parent_table in dataframes and child_table in dataframes:
parent_df = dataframes[parent_table]
child_df = dataframes[child_table]
left_joined_df = pd.merge(
parent_df, child_df, how='left',
left_on=parent_key, right_on=child_key,
suffixes=(f'_{parent_table}', f'_{child_table}')
)
for col in child_df.columns:
if col != child_key:
left_joined_df.rename(
columns={col: f'{col}_{parent_table}_{child_table}'}, inplace=True
)
right_joined_df = pd.merge(
parent_df, child_df, how='left',
left_on=child_key, right_on=parent_key,
suffixes=(f'_{child_table}', f'_{parent_table}')
)
for col in child_df.columns:
if col != child_key:
left_joined_df.rename(
columns={col: f'{col}_{child_table}_{parent_table}'}, inplace=True
)
i_df = pd.concat([i_df, left_joined_df, right_joined_df], ignore_index=True)
i_df = i_df.loc[:, ~i_df.columns.duplicated()]
for table_name in table_selector:
if table_name in dataframes:
for col in dataframes[table_name].columns:
if col in i_df.columns and not any([col.endswith(f'_{table_name}') for table in table_selector]):
i_df.rename(columns={col: f'{col}_{table_name}'}, inplace=True)
if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns):
i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
i_df = i_df.loc[:, ~i_df.columns.duplicated()]
if table_selector is not None:
if tgt_name is not None:
btn= button('RUN', key='RUN_GENAI')
if target_selector is not None and btn and f'{table_selector}_{tgt_name}_map' not in st.session_state:
st.session_state['source_data'] = i_df.sample(20).reset_index()
if target_selector is not None:
#query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]"
#tgt_df=pd.read_sql_query(query3,con=conn)
# if set(['ID','LOADID','FILE_NAME']).issubset(tgt_df.columns):
# tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
st.session_state['opt'] = list(tgt_df.columns)
st.session_state['target_data'] = tgt_df.head(20).reset_index()
with st.spinner('Processing Data...'):
selected_df = pd.DataFrame()
#st.write(i_df)
# Iterate through each column
for col in i_df.columns:
# Filter non-null and non-blank values
non_null_values = i_df[col][i_df[col] != ''].dropna().astype(str).str.strip().unique()
# Select up to 10 values (or fewer if less than 10 non-null values)
selected_values = list(non_null_values[:10])
selected_values = selected_values + [""] * (10 - len(selected_values))
# Add selected values to the new dataframe
selected_df[col] = selected_values
mapping_df = st.session_state.mapping_df
# List of tables provided
tables_list = table_selector
# Dictionary to store the table columns
table_columns = {}
# Loop through each table in the list
for table in tables_list:
query = f"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '{table}'"
cursor = conn.cursor()
cursor.execute(query)
# Fetch the column names for the current table
columns = [row[0] for row in cursor.fetchall()]
# Store the column names in the dictionary
table_columns[table] = columns
if 'table_columns' not in st.session_state:
st.session_state.table_columns = table_columns
story = f""" Details of the source table:
table columns: {str(list(i_df.columns))}
column datatypes: {str(i_df.dtypes.to_string())}
table sample data: {selected_df.head(10).to_string()}
Source Tables selected : {str(list(table_selector))}
Source Table columns are given as (col_name)_(table_name)
Joining conditions should be based on relationship table which is : {relationships.to_string()}
Details of the target table:
table columns: {str(list(tgt_df.columns))}
column datatypes: {str(tgt_df.dtypes.to_string())}
table sample data: {tgt_df.head(10).to_string()}
mapping details: {mapping_df.to_string()}
Source Column names should match from this dictionary: {str(table_columns)}
"""
response = model.generate_content(
textwrap.dedent("""
Please return JSON describing the possible **one to one mapping** between source table and target table using this following schema:
{"Mapping": list[MAPPING]}
MAPPING = {"Target_Table": str, "Field_Name": str, "Source Table": str, "Source Column": str, "Joining Keys": str, "Primary Key": str, "Direct/Derived": str, "Join Tables": str, "Join Condition": str, "Mapping Confidence": percentage, "Column Operations": str, "Alias": str, "Granularity": str, "Filter Condition": str, "Clauses": str, "Ordering": str}
The first six columns are provided in mapping details. **THE FIRST SIX COLUMNS OF JSON SHOULD HAVE EXACTLY SAME VALUES AS PROVIDED IN MAPPING DETAILS**
**THE PRIMARY KEY IS COMING FROM THE PARENT TABLE. IF SOURCE TABLE IS NOT THE PRIMARY KEY TABLE, THEN 'Direct/Derived' SHOULD BE LABELLED AS DERIVED, OTHERWISE DIRECT**
**JOIN TABLES SHOULD BE WRITTEN ONLY IN CASE OF DERIVED LABEL, JOIN TABLES SHOULD BE THE PARENT TABLE AND THE SOURCE TABLE (IF DIFFERENT)**
**JOINING CONDITION SHOULD BE BASED ON THE TABLE AND COULMN WHICH HAS PRIMARY KEY AND JOINING TYPE SHOULD BE LEFT OUTER**
**ALIAS SHOULD BE SAME AS FIELD_NAME, GRANULARITY SHOULD BE 1:1**
1. For example, Field_Name is 'Product Name', Source Table is 'TRM', Source Column is 'PRODUCT_NAME', 'Joining Keys':'PRODUCT_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TRM', 'Join Condition':'TPM.PRODUCT_ID=TRM.PRODUCT_ID', 'Alias': 'PRODUCT_NAME', 'Granularity': '1:1'}
Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.PRODUCT_ID = TRM.PRODUCT_ID is joining condition
2. For example, Field_Name is 'Office Code', Source Table is 'TPM', Source Column is 'OFFICE_CD', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DIRECT', 'Join Type':None, 'Join Tables':None, 'Join Condition':None, 'Alias': 'OFFICE_CD', 'Granularity': '1:1'}
Joining is not done since TPM is the parent table. So, 'Direct/Derived": 'DIRECT'. POLICY_ID is the primary key here.
3. For example, Field_Name is 'Policy Submission Date', Source Table is 'TSM', Source Column is 'POLICY_SUBMISSION_DT', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TSM', 'Join Condition':'TPM.POLICY_ID=TRM.POLICY_ID', 'Alias': 'POLICY_SUBMISSION_DT', 'Granularity': '1:1'}
Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.POLICY_ID = TRM.POLICY_ID is joining condition
If Source Column is POLICY_ID_TPM, then change it to POLICY_ID.
**Source Column should not contain the '_TPM', '_TRM', '_TSM', '_TPP' part at the end.**
All Target fields are required. The JSON keys will be same as the column names in mapping details.Validate the mapping as given in mapping details.
Ignore the columns where hardcoded values are there , such as Current Flag, Start Date, End Date, Etl Job ID,Etl Batch ID,Etl Inserted Date,Etl Updated Date. leave them blank. For other fields, there has to be mapping.
If you are confused on which source tables to map, then provide MAPPING CONFIDENCE LESS THAN 90
ALL THE JSON KEYS ARE MANDATORY: 'Target_Table', 'Field_Name', 'Source Table', 'Source Column', 'Joining Keys', 'Primary Key', 'Direct/Derived', 'Join Type', 'Join Tables', 'Join Condition', 'Mapping Confidence', 'Column Operations', 'Alias', 'Granularity', 'Filter Condition', 'Clauses', 'Ordering'
Important: Only return a single piece of valid JSON text. All fields are required. Please MAP all ***TARGET fields***. If you struggle to map then give low confidence score but YOU HAVE TO MAP ANYWAY. ****MAKE SURE IT IS A **one to one mapping** ****
Here is the table details:
""") + story
)
res= response.text.replace("\n", '').replace("`", '').replace('json','')
map = print(json.dumps(json.loads(res), indent=2))
data = json.loads(res)
map_df = pd.json_normalize(data, record_path=['Mapping'])
st.session_state[f'{table_selector}_{tgt_name}_map'] = map_df.copy()
if f'{table_selector}_{tgt_name}_map' in st.session_state and btn:
taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview'])
with tabc:
st.subheader('Target Table Preview')
with stylable_container(
key=f"source_container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
st.dataframe(st.session_state['target_data'].head(0))
with tabb:
st.subheader('Source Table Preview')
with stylable_container(
key=f"target_container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
st.write(st.session_state['source_data'])
with taba:
st.subheader("Most Probable Mapping Generated:")
with stylable_container(
key=f"container_with_border",
css_styles="""
{
border: 1px solid white;
border-radius: 0.5rem;
padding: calc(1em - 1px);
width: 103%; /* Set container width to 100% */
}
"""
):
edited_map_df = st.data_editor(
st.session_state[f'{table_selector}_{tgt_name}_map'],
column_config={
"Target Column Name": st.column_config.SelectboxColumn(
"Target Columns",
help="Please Verify/Change the Target Column Mapping",
width="medium",
options=st.session_state.opt,
required=True,
)
},
hide_index=False,
num_rows = 'dynamic',
use_container_width = True
)
success_show=1
if success_show==1:
st.success(f"{(edited_map_df['Mapping Confidence']>90).mean().round(2)*100}% of Columns Mapped with more than 90% Mapping Confidence")
mapped_uploader = st.file_uploader("UPLOAD REVISED MAPPING (OPTIONAL)", type=['csv'])
if mapped_uploader is not None:
success_show=0
edited_map_df = pd.read_csv(mapped_uploader)
st.write(edited_map_df)
st.success("Mapping Revised!")
val = button("Validate", key="Val")
if val:
st.session_state[f'{table_selector}_{tgt_name}_map'].update(edited_map_df)
dup= len(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Field_Name'].duplicated()])
error_messages = []
table_columns = st.session_state.table_columns
for _, (index, row) in enumerate(edited_map_df.iterrows()):
source_table = row['Source Table']
source_column = row['Source Column']
if source_column not in table_columns.get(source_table, []) and (source_column is not None) and (source_table is not None) and (source_table in table_selector):
error_messages.append(f"Column '{source_column}' not found in table '{source_table}'.\n")
# Output success or error messages
if error_messages:
validation_result = "\n".join(error_messages)
else:
validation_result = "Success"
if dup != 0:
dup_index= list(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Target Column Name'].duplicated(keep=False)].index)
dup_mess=str(dup_index[0])
for val in dup_index[1:]:
dup_mess = dup_mess + f' and {str(val)}'
st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}")
elif validation_result != "Success":
st.error(validation_result)
else:
st.success("Mapping Validated!")
df_tbl_dtls = pd.read_csv(r'tbl_dtl.csv')
with pd.ExcelWriter('Final.xlsx') as writer:
edited_map_df.to_excel(writer, sheet_name='POLICY', index=False)
df_tbl_dtls.to_excel(writer, sheet_name='Table Details', index=False)
path = 'Final.xlsx'
temp_table = None
for x in pd.ExcelFile(path).sheet_names:
if x != 'Table Details':
temp_table = x
df = read_excel(path, temp_table)
table_details_df = read_excel(path, 'Table Details')
table_details_mapping = table_details_df.set_index('Table Name')[['ETL Timestamp','Change Timestamp','ETL Filter']].T.to_dict('list')
base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema = generate_sql(temp_table)
sql_query = ''
for x in proc_query:
sql_query += x
sql_query += '\n'
spark_sql = generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema)
#out=edited_map_df.to_csv().encode('utf-8')
col21, col22= st.columns([1,4])
with col21:
st.download_button('Download SQL Statement', sql_query, file_name='sql_code.txt')
with col22:
st.download_button('Download Spark Statement', spark_sql, file_name='spark_code.txt')
#st.download_button(label='DOWNLOAD MAPPING',data=out, file_name='S2T_Mapping.csv',mime='csv')
######
if __name__ == '__main__':
main() |