File size: 24,951 Bytes
946a21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb54a4
 
 
946a21d
ebb54a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f0d1e8
946a21d
 
 
 
0f0d1e8
946a21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import streamlit as st
import sdv
from sdv.datasets.local import load_csvs
from sdv.metadata import MultiTableMetadata
from sdv.multi_table import HMASynthesizer
import time
import os
import gc
import warnings
from PIL import Image
from sdv.metadata import SingleTableMetadata
import pyodbc
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
import textwrap
from streamlit_extras.stylable_container import stylable_container
from streamlit_extras.stateful_button import button
import json 
from io import BytesIO
# ######
# import os
# import subprocess

# # Run the commands to install ODBC driver
# subprocess.run([
#     "apt-get", "update"
# ])
# subprocess.run([
#     "apt-get", "install", "-y", "curl", "apt-transport-https"
# ])
# subprocess.run([
#     "curl", "https://packages.microsoft.com/keys/microsoft.asc", "|", "apt-key", "add", "-"
# ])
# subprocess.run([
#     "curl", "https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/prod.list",
#     "|", "tee", "/etc/apt/sources.list.d/mssql-release.list"
# ])
# subprocess.run([
#     "apt-get", "update"
# ])
# subprocess.run([
#     "ACCEPT_EULA=Y apt-get install -y msodbcsql17 unixodbc-dev"
# ])
###########
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
genai_mod = genai.GenerativeModel(
    model_name='models/gemini-pro'
)

st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide')
st.markdown("""
    <style>
    
           /* Remove blank space at top and bottom */ 
           .block-container {
               padding-top: 2rem;
            }
           
           /* Remove blank space at the center canvas */ 
           .st-emotion-cache-z5fcl4 {
               position: relative;
               top: -62px;
               }
           
           /* Make the toolbar transparent and the content below it clickable */ 
           .st-emotion-cache-18ni7ap {
               pointer-events: none;
               background: rgb(255 255 255 / 0%)
               }
           .st-emotion-cache-zq5wmm {
               pointer-events: auto;
               background: rgb(255 255 255);
               border-radius: 5px;
               }
    </style>
    """, unsafe_allow_html=True)
def clear_cache():
    if 'rdf' in st.session_state:
        st.session_state.pop('rdf')

def create_er_diagram(df):
    G = nx.DiGraph()  # Directed graph

    # Dictionary to hold table columns
    table_columns = {}

    # Add nodes and edges to the graph
    for _, row in df.iterrows():
        parent_table = row['PARENT TABLE']
        child_table = row['CHILD TABLE']
        parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN']
        child_fk = row['CHILD TABLE RELATIONSHIP COLUMN']
        cardinality = row.get('CARDINALITY', '1:N')

        # Add columns to tables
        if parent_table not in table_columns:
            table_columns[parent_table] = []
        table_columns[parent_table].append(parent_pk)

        if child_table not in table_columns:
            table_columns[child_table] = []
        table_columns[child_table].append(child_fk)

        # Add nodes and edges
        G.add_node(parent_table)
        G.add_node(child_table)
        G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}')

    return G, table_columns

def draw_er_diagram(G, table_columns):
    pos = nx.spring_layout(G, k=1.5, iterations=50)  # Use a layout that spreads out nodes

    plt.figure(figsize=(8, 8))
    nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True)

    # Draw node labels (table names in bold)
    for node, (x, y) in pos.items():
        plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center')

    # Draw column names
    for node, columns in table_columns.items():
        x, y = pos[node]
        column_text = '\n'.join(columns)
        plt.text(x, y, column_text, fontsize=6, ha='center', va='center')

    # Draw edge labels
    edge_labels = nx.get_edge_attributes(G, 'label')
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6)
    st.subheader("Schematic Representation")
    with st.container(border=True, height= 350):
        st.pyplot(plt)
    img_bytes = BytesIO()
    plt.savefig(img_bytes, format='png')
    img_bytes.seek(0)
    return img_bytes

def cardinality(parent_df, child_df, parent_column, child_column):
    # Check uniqueness of parent primary key
    is_parent_unique = parent_df[parent_column].is_unique

    # Check uniqueness of child foreign key
    is_child_unique = child_df[child_column].is_unique

    # Determine cardinality
    if is_parent_unique and is_child_unique:
        return '1:1'
    elif is_parent_unique and not is_child_unique:
        return '1:N'
    elif not is_parent_unique and is_child_unique:
        return 'N:1'
    else:
        return 'N:N'

#st.title('AUTOMATED DATA CATALOGUE')
st.subheader('SELECT SOURCE')
selectcol11, selectcol12 = st.columns(2)
with selectcol11:
    select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache)
with selectcol12:
    select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache)
if select1 =='DB_10001' and select2 is not None:
    with st.spinner("Loading Tables:"):
        conn1 = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
                                        "Server=sql-ext-dev-uks-001.database.windows.net;"
                                        "Database=sqldb-ext-dev-uks-001;"
                                        "UID=dbadmin;"
                                        "PWD=mYpa$$w0rD" )
                    
        query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC"
        st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME'])
    
    table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache)
    sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache)

    discover= button("Discover", key='discover')

    if discover:
        if sample_selector=='100':
            count="top 100"
        elif sample_selector=='10K':
            count="top 10000"
        elif sample_selector=='100K':
            count="top 100000"
        elif sample_selector=='1M':
            count="top 1000000"
        else:
            count=""
        
        query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+")  ORDER BY TABLE_NAME ASC"
        st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME'])
        st.session_state.dataframes = {}
        st.session_state.col_names = []
        for tab in st.session_state.tab_names:
            query2_2= "select "+count+" * from ["+select2+"].["+tab+"]"
            st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1)
            st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns)
        #st.session_state.data_load = "Yes"

        tab_names = st.session_state.tab_names
        dataframes = st.session_state.dataframes
        col_names = st.session_state.col_names
        metadata = MultiTableMetadata()
        metadata.detect_from_dataframes(
            data= st.session_state.dataframes
        )
        multi_python_dict = metadata.to_dict()

        st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.")
        #st.subheader("DATA CATALOGUE")
        tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"])
        def view_callback():
            st.session_state.tdet = False
        with tab1:
            #st.write(python_dict)
            st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME'])
            containter_length = (len(st.session_state.table_list) + 1)*35
            tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values)
            tabs2= st.tabs(tab_names_shown)
            for i, tab in enumerate(tabs2):
                with tab:
                    with st.container(height= 400, border=True):
                        cole1,cole2=st.columns([1,1.5])
                        with cole1:
                            conn = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
                                                                "Server=sql-ext-dev-uks-001.database.windows.net;"
                                                                "Database=sqldb-ext-dev-uks-001;"
                                                                "UID=dbadmin;"
                                                                "PWD=mYpa$$w0rD" )
                            table_selector= tab_names_shown[i]
                            if table_selector is not None:
                                query2="select "+count+" * from [dbo].["+table_selector+"]"
                                #df = pd.read_sql_query(query2,con=conn)
                                df = st.session_state.dataframes[table_selector]
                                selected_df = pd.DataFrame()
                                for col in df.columns:
                                        # Filter non-null and non-blank values
                                        non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip()
                                        
                                        # Select up to 10 values (or fewer if less than 10 non-null values)
                                        selected_values = list(non_null_values[:10])
                                        selected_values = selected_values + [""] * (10 - len(selected_values))
                                        # Add selected values to the new dataframe
                                        selected_df[col] = selected_values
                                #st.dataframe(selected_df)
                                null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1]
                                null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n"
                                for col in null_columns[:-1]:
                                    null_mes += f":orange[**{col}**]" + ', '
                                for collast in null_columns[-1:]:
                                    if len(null_columns)> 1:
                                        null_mes += '**and** ' + f":orange[**{collast}**]"
                                    else: 
                                        null_mes += f":orange[**{collast}**]" 
                                        
                                if len(null_columns) != 0:
                                    with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True):
                                        st.markdown(null_mes)
                                    inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns))
                                    run = st.button('Check', key= f"{tab_names_shown[i]}")
                                else:
                                    st.success("No redundant Columns Found in Terms of Data Completeness")
                                    inf_filter= None
                                    run = False
                                
                                if inf_filter is not None:
                                    df.drop(columns=inf_filter, inplace=True)
                                    selected_df.drop(columns=inf_filter, inplace=True)
                
                                if run or len(null_columns) == 0:
                                    main_list=df.columns.to_list()
                                    sub_list=['ID','LOADID','FILE_NAME']
                                    if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
                                        df=df.drop(['ID','LOADID','FILE_NAME'],axis=1)
                                    conn.close()
                                    sin_metadata = SingleTableMetadata()
                                    sin_metadata.detect_from_dataframe(df)
                                    python_dict = sin_metadata.to_dict()
                                    if f'cont_{table_selector}' not in st.session_state:
                                        with st.spinner("Processing Table"):
                                            # Create a GenerativeModel instance
                                            genai_mod = genai.GenerativeModel(
                                                model_name='models/gemini-pro'
                                            )
                                            if 'primary_key' in python_dict:
                                                primary_key = python_dict['primary_key']
                                            else:
                                                primary_key = "Could Not be Identified"
                                            
                                            
                                            story =  f""" Details of the table: 
                                            table columns: {str(list(df.columns))}
                                            column datatypes: {str(df.dtypes.to_string())}
                                            table sample data: {selected_df.head(10).to_string()}
                                            """
                                            response = genai_mod.generate_content(textwrap.dedent("""
                                                    You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only.
                            Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN.
                                                
                                                        Here is the table details:
                                                
                                                        """) + story + f"The Primary Key is:{primary_key}" ,
                                                        safety_settings={
                                                            HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                                                            HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
                                                            HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
                                                            HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
                                                        })
                                            st.session_state[f'cont_{table_selector}'] = response.text
    
                                    st.markdown(st.session_state[f'cont_{table_selector}'])
                        with cole2:
                            st.markdown("**DATA PREVIEW**")
                            st.dataframe(df, use_container_width= True)
                            
        with tab2:
            metadata1 = MultiTableMetadata()
            metadata1.detect_from_dataframes(
                data= st.session_state.dataframes
            )
            multi_python_dict1 = metadata1.to_dict()
            rlist1=multi_python_dict1['relationships']
            rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY'])
            for i in range(len(rlist1)):
                rlist=rlist1[i]
                nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i])
                rdf=pd.concat([rdf,nrow],ignore_index=True)

            rdf['CARDINALITY'] = rdf.apply(
                lambda row: cardinality(
                    st.session_state.dataframes[str(row['PARENT TABLE'])],
                        st.session_state.dataframes[str(row['CHILD TABLE'])],
                            str(row['PARENT TABLE RELATIONSHIP COLUMN']),
                                str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
            
            
            if 'rdf' not in st.session_state:
                st.session_state.rdf = rdf

            edited_map_df =  st.data_editor(
                                            st.session_state.rdf,
                                            column_config={
                                                "PARENT TABLE": st.column_config.SelectboxColumn(
                                                    "Available Parent Table",
                                                    width="medium",
                                                    options=tab_names,
                                                    required=True,
                                                ),
                                                "CHILD TABLE": st.column_config.SelectboxColumn(
                                                    "Available Child Table",
                                                    width="medium",
                                                    options=tab_names,
                                                    required=True,
                                                ),
                                                "PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
                                                    "Available Parent Table Relationship Column",
                                                    width="medium",
                                                    options=col_names,
                                                    required=True,
                                                ),
                                                "CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
                                                    "Available Child Table Relationship Column",
                                                    width="medium",
                                                    options=col_names,
                                                    required=True,
                                                ),
                                                "CARDINALITY": st.column_config.SelectboxColumn(
                                                    "Cardinality",
                                                    width="medium",
                                                    options=['1:1','1:N','N:1','N:N'],
                                                    required=True,
                                                )
                                            },
                                            hide_index=True,
                                            num_rows = 'dynamic',
                                            use_container_width = True
                                        )

            for i,row in edited_map_df.iterrows():
                pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns
                ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns
                pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
                cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
                match = [val for val in pvals if val in cvals]
                #st.write(match)
                if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist:
                    st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}")
                else:
                    pass
                if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist:
                    st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}")
                else:
                    pass
                if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist):
                    pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
                    cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
                    match = [val for val in pvals if val in cvals]
                    if match == []:
                        st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ")
                if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []):
                    # primary_check = len(list(dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)) == dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].nunique()
                    # if primary_check:
                    #     pass
                    # else:
                    #     st.error(f"The Column {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} has duplicate records and hence can not be considered as Primary Key.")
                    pass

            add = st.button("Add Relationship", key='add')
            if add:
                if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])):
                    add_df = edited_map_df
                else:
                    add_df = st.session_state.rdf            
            else:
                add_df = st.session_state.rdf
            
            add_df['CARDINALITY'] = add_df.apply(
                lambda row: cardinality(
                    st.session_state.dataframes[str(row['PARENT TABLE'])],
                        st.session_state.dataframes[str(row['CHILD TABLE'])],
                            str(row['PARENT TABLE RELATIONSHIP COLUMN']),
                                str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
                                
            st.session_state.add_df = add_df
            edited_map_df = st.session_state.add_df

            rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values)
            unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs]
            st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""")

            G, table_columns = create_er_diagram(st.session_state.add_df)
            img_bytes= draw_er_diagram(G, table_columns)
            col21, col22= st.columns([1,8])
            with col21:
                if st.button("Regenerate"):
                    st.rerun()
            with col22:
                st.download_button(
                    label="Download ER Diagram",
                    data=img_bytes,
                    file_name="er_diagram.png",
                    mime="image/png"
                )