File size: 74,692 Bytes
41c4cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import regex as re
import streamlit as st
import pyodbc
import datetime
import google.generativeai as genai
import textwrap
import json
from streamlit_extras.stateful_button import button
from streamlit_extras.stylable_container import stylable_container
import sdv
from sdv.metadata import MultiTableMetadata
from collections import defaultdict
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
# Create a GenerativeModel instance
model = genai.GenerativeModel(
    model_name='models/gemini-1.5-flash'
)

def read_excel(path, sheet):
    df = pd.read_excel(path, sheet_name = sheet, dtype = 'str')
    return df

def split_join_condition(join_condition):
    conditions = []
    condition = ''
    bracket_count = 0

    for char in join_condition:
        if char == '(':
            bracket_count += 1
        elif char == ')':
            bracket_count -+ 1
        if char == ',' and bracket_count == 0:
            conditions.append(condition.strip())
            condition = ''
        else:
            condition += char
    if condition:
        conditions.append(condition.strip())

    return conditions

def join_incr(join_conditions):
    join = []
    join_pattern = re.compile(r'(\w+\.\w+)\s*=\s*(\w+\w.\w+)', re.IGNORECASE)
    for join_condition in join_conditions:
        parts = re.split(r'\sAND\s|\sOR\s', join_condition, flags = re.IGNORECASE)
        temp = [x.strip() for x in parts if join_pattern.match(x.strip())]
        join.append(' AND '.join(temp))
    return join

def generate_sql(temp_table):
    proc_query = []
    base_table = None
    
    source_table_schema = 'MAIN.GOLD'
    temp_table_schema = 'MAIN.GOLD'
    base_pk = []
    
    join_fields = set()
    
    for _,row in df.iterrows():
        source_table = row['Source Table']
        primary_key = row['Primary Key']
        source_column = row['Source Column']
        alias = row['Alias']
        joining_keys = row['Joining Keys']
        
        if not base_table:
            if primary_key == 'Y':
                base_table = source_table
                base_pk.append(joining_keys)
    
        if pd.notna(joining_keys):
            keys = [x.strip() for x in joining_keys.split(',')]
            for x in keys:
                if x not in join_fields:
                    join_fields.add(x)
    
    unique_cols = ['Source Table', 'Joining Keys', 'Primary Key', 'Join Type','Join Tables','Join Condition']
    unique_df = df.drop_duplicates(subset = unique_cols)
    
    incremantal_mapping = {}
    incr_joins = {}
    
    for _,row in unique_df.iterrows():
    
        source_table = row['Source Table']
        source_column = row['Source Column']
        joining_keys = row['Joining Keys']
        primary_key = row['Primary Key']
        direct_derived = row['Direct/Derived']
        join_type = row['Join Type']
        join_tables = row['Join Tables']
        join_condition = row['Join Condition']
    
        if source_table == base_table:
            if primary_key == 'Y':
                key = (source_table, joining_keys, join_type, join_tables, join_condition)
                key1 = source_table
            else:
                continue
        else:
            key = (source_table, joining_keys, join_type, join_tables, join_condition)
            key1 = source_table
        if pd.notna(direct_derived) and pd.notna(source_table) and pd.notna(source_column):
            if key not in incremantal_mapping:
                incremantal_mapping[key] = {
                    'source_table': source_table,
                    'joining_keys':joining_keys,
                    'join_type': join_type,
                    'join_tables': join_tables,
                    'join_condition': join_condition
                }
            if key1 not in incr_joins:
                if pd.notna(direct_derived) and direct_derived == 'DERIVED':
                    incr_joins[key1] = {
                        'join_type': join_type,
                        'join_tables': ', '.join([x.strip() for x in join_tables.split(',') if x != base_table]),
                        'join_condition': join_condition
                    }
    incremental_df = pd.DataFrame(incremantal_mapping.values())    
    incr_join_grps = incremental_df.groupby(['source_table'])
    proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.{temp_table}_INCR;')
    
    incr_table_join_info = {}
    for _,row in incremental_df.iterrows():
        source_table = row['source_table']
    
        if source_table != base_table:
            joining_keys = row['joining_keys']
            join_type = row['join_type']
            join_tables = [x.strip() for x in row['join_tables'].split(',')]
            index = join_tables.index(source_table)
            join_condition = [x.strip() for x in row['join_condition'].split(',')][0:index]
            incr_table_join_info[source_table] = ', '.join(join_condition)
    
    incr_query = []
    incr_cols = ''
    incr_tables = []
    incr_join = {}
    
    for _, group in incr_join_grps:
        
        for table in _.split():
            if base_table != table:
                
                join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')]
                join_keys = [t.strip() for t in ','.join(base_pk).split(',')]
                join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')]
                join_cond = split_join_condition(incr_table_join_info[table])
                join_condition = join_incr(join_cond)
                source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
                
                join_key_list = []
                for x in join_keys:
                    join_key_list.append(f'{base_table}.{x}')   
                join_key = ', '.join(join_key_list)
                
                for y in source_table:
                    sql = f"""

    INSERT INTO {temp_table_schema}.{temp_table}_INCR

    (

        SELECT {join_key}, {table_details_mapping[y][0]}, {table_details_mapping[y][1]}, '{y}', 1,  CURRENT_TIMESTAMP 

        FROM {source_table_schema}.{base_table} {base_table}"""
        
                    incr_join_text = ''
                    for i in range(len(join_condition)):
                        sql += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
                        incr_join_text += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
                    incr_join[y] = incr_join_text
                
                    sql += f"""

        WHERE COALESCE({join_tables[i+1]}.operation,'NA') <> 'D' 

        AND TO_TIMESTAMP( CAST(SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),1,4) || '-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),5,2) ||'-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),7,2) || ' ' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),9,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),11,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS')  > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{y}')

    );"""
        
                    incr_query.append(sql)
                    incr_tables.append(y)
            
            else:
                source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
                join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')]
                
                join_key_list = []
                for x in join_keys:
                    join_key_list.append(f'{base_table}.{x}')   
                join_key = ', '.join(join_key_list)
        
                incr_cols = join_key
                sql = f"""

    INSERT INTO {temp_table_schema}.{temp_table}_INCR

    (

        SELECT {join_key}, {table_details_mapping[base_table][0]}, {table_details_mapping[base_table][1]}, '{base_table}', 1,  CURRENT_TIMESTAMP 

        FROM {source_table_schema}.{base_table} {base_table}

        WHERE COALESCE(operation,'NA') <> 'D' 

        AND TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS')  > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{base_table}')

    );"""
                proc_query.append(sql)
                incr_tables.append(base_table)
    
    proc_query.append('\n'.join(incr_query))
    proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.INCR1_{temp_table};')
    
    sql = f"""

    INSERT INTO {temp_table_schema}.INCR1_{temp_table}

    (

        SELECT DISTINCT {incr_cols.replace(f'{base_table}.', '')}

        FROM {temp_table_schema}.{temp_table}_INCR

    );"""
    
    proc_query.append(sql)
    
    incr_table_dict = {}
    for table in incr_tables:
        if table == base_table:
            incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}'
        else:  
            p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
            if len(p) == 1:
                incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}'
            else:
                incr_table_dict[table] = f'{source_table_schema}.{table}'
    
    s = []
    for table in incr_tables:
        incr2_sql_list = []
    
        if table == base_table: 
            for key in incr_cols.replace(f'{base_table}.', '').split(','):
                incr2_sql_list.append(f"{base_table}.{key} = A.{key}")    
            incr2_sql_join = ' AND '.join(incr2_sql_list)
     
            sql = f"""

    CREATE TABLE {temp_table_schema}.INCR2_{table}

    AS

        SELECT

            {table}.*

        FROM 

            {source_table_schema}.{table} {table}

        INNER JOIN

            {temp_table_schema}.INCR1_{temp_table} A ON {incr2_sql_join}; """
            proc_query.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};')
            proc_query.append(sql)
            
        else:
    
            p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
            if len(p) == 1:      
                sql = f"""

    CREATE TABLE {temp_table_schema}.INCR2_{table}

    AS

        SELECT

            {table}.*

        FROM 

            {temp_table_schema}.INCR2_{base_table} {base_table} {incr_join[table]};"""
                s.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};')
                s.append(sql)
    
    for x in s:
        proc_query.append(x)
    
    select_clause = []
    from_clause = []
    where_clause = []
    
    for _,row in df.iterrows():
        field_name = row['Field_Name']
        source_table = row['Source Table']
        source_column = row['Source Column']
        joining_keys = row['Joining Keys']
        primary_key = row['Primary Key']
        direct_derived = row['Direct/Derived']
        join_type = row['Join Type']
        join_tables = row['Join Tables']
        join_condition = row['Join Condition']
        column_operation = row['Column Operations']
        alias = row['Alias']
        granularity = row['Granularity']
        filter_condition = row['Filter Condition']
        clauses = row['Clauses']
        ordering = row['Ordering']
    
        if pd.notna(direct_derived):  
            if pd.notna(column_operation):
                if len(column_operation.split()) == 1:
                    select_expr = f'{column_operation.upper()}({source_table}.{source_column})'
                else:
                    select_expr = column_operation
            else:
                if pd.notna(source_table):
                    select_expr = f'{source_table}.{source_column}'
                else:
                    select_expr = source_column
                    
            if source_column not in join_fields:
                if pd.notna(alias):
                    select_expr += f' AS {alias}'
            else:
                if pd.notna(column_operation) and pd.notna(source_column):
                    select_expr += f' AS {source_column}'
    
            if direct_derived.upper() == 'DIRECT':
                select_clause.append(select_expr)
            elif direct_derived.upper() == 'DERIVED_BASE':
                select_clause.append(select_expr)
                    
            if pd.notna(filter_condition):
                where_clause.append(filter_condition)
    
    select_query = ',\n\t'.join(select_clause)
    sql_query = f"CREATE TABLE {temp_table_schema}.{base_table}_BASE\nAS \n\tSELECT \n\t{select_query} \nFROM\n\t{incr_table_dict[base_table]} {base_table}"
    if where_clause:
        sql_query += f"\nWHERE {' AND'.join(where_clause)}"
    sql_query += ';'
    proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{base_table}_BASE;")
    proc_query.append(sql_query)
    
    df['Clauses'].fillna('', inplace = True)
    df['Ordering'].fillna('', inplace = True)
    c = 1
    temp_base_table = f'{base_table}_BASE'
    grp_cols = ['Join Condition', 'Clauses', 'Ordering']
    join_grps = df[df['Direct/Derived'] == 'DERIVED'].groupby(['Join Condition', 'Clauses', 'Ordering'])
    temp_tables_sql = []
    for (join_condition,clauses,ordering), group in join_grps:
        if pd.notna(group['Direct/Derived'].iloc[0]):
            if group['Direct/Derived'].iloc[0].upper() == 'DERIVED':
                join_tables = [t.strip() for t in group['Join Tables'].iloc[0].split(',')]
                join_keys = [t.strip() for t in group['Joining Keys'].iloc[0].split(',')]
                join_type = [t.strip() for t in group['Join Type'].iloc[0].split(',')]
                join_condition = split_join_condition(group['Join Condition'].iloc[0])
                temp_table_name = f"TEMP_{group['Source Table'].iloc[0]}"
                source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')]
                alias = [t.strip() for t in (','.join(group['Alias'])).split(',')]
                source_table = [t.strip() for t in (','.join(group['Source Table'])).split(',')]
    
                base_cols = []
                for join_key in join_keys:
                    base_cols.append(f'{join_tables[0]}.{join_key}')
    
                for s_table,col,alias in zip(source_table,source_column,alias):
                    if pd.notna(group['Column Operations'].iloc[0]):
                        if len(group['Column Operations'].iloc[0].split()) == 1:
                            select_expr = f"{group['Column Operations'].iloc[0].upper()}({s_table}.{col})"
                        else:
                            select_expr = group['Column Operations'].iloc[0]
                    else:
                        if pd.notna(s_table):
                            select_expr = f"{s_table}.{col}"
                        else:
                            select_expr = col
                    
                    if alias:
                        select_expr += f" AS {alias}"
                        base_cols.append(select_expr)
    
                if ordering:
                    base_cols.append(f"{ordering} AS RN")
    
                sql = ',\n\t\t'.join(base_cols)
    
                join_sql = f"SELECT \n\t\t{sql} \nFROM\n\t{incr_table_dict[base_table]} {join_tables[0]}"
                for i in range(len(join_type)):
                    join_sql += f'\n\t{join_type[i]} JOIN {incr_table_dict[join_tables[i+1]]} {join_tables[i+1]} ON {join_condition[i]}'
                if clauses:
                    join_sql += f'\n\t{clauses}'
                join_sql += ';'
    
                proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{temp_table_name};")  
                proc_query.append(f"CREATE TABLE {temp_table_schema}.{temp_table_name}\nAS \n\t{join_sql}")
    
                granularity = [t.strip() for t in group['Granularity'].iloc[0].split(',')]
    
                sql = []
                for key in join_keys:
                    sql.append(f"A.{key} = B.{key}")
    
                temp_cols = []
                temp_cols.append('A.*')
    
                source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')]
                alias = [t.strip() for t in (','.join(group['Alias'])).split(',')]
    
                for col,alias in zip(source_column,alias):
                    select_expr = f"B.{col}"
                    if alias:
                        select_expr = f"B.{alias}"
                    else:
                        select_expr = f"B.{col}"
                    temp_cols.append(select_expr)
    
                temp_select_query = ',\n\t\t'.join(temp_cols)
    
                proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.TEMP_{temp_table}_{c};")
                
                base_sql = f"CREATE TABLE {temp_table_schema}.TEMP_{temp_table}_{c}\nAS \n\tSELECT \n\t\t{temp_select_query} \nFROM\n\t{temp_table_schema}.{temp_base_table} AS A"        
                base_sql += f"\n\tLEFT OUTER JOIN {temp_table_schema}.{temp_table_name} B ON {' AND '.join(sql)}"
    
                if '1:1' in granularity and len(ordering) > 1:
                    base_sql += f" AND B.RN = 1"
                base_sql += ';'
                
                temp_base_table = f'TEMP_{temp_table}_{c}'
                c += 1
                proc_query.append(base_sql)
    
    fin_table_name = temp_table
    fin_table_cols = []
    
    for _,row in df.iterrows():
        field_name = row['Field_Name']
        source_table = row['Source Table']
        source_column = row['Source Column']
        alias = row['Alias']
    
        if pd.notna(row['Direct/Derived']):
            if (source_column in join_fields):
                fin_table_cols.append(f'{source_column} AS "{field_name}"')
            else:
                fin_table_cols.append(f'"{field_name}"')
                
    fin_table_cols = ',\n\t\t'.join(fin_table_cols)
    fin_sql = f"INSERT INTO {temp_table_schema}.{fin_table_name}\n\tSELECT \n\t\t{fin_table_cols} \nFROM\n\t{temp_table_schema}.TEMP_{temp_table}_{c-1};"
    
    
    condition_col = '_'.join(incr_cols.replace(f'{base_table}.', '').split(','))
    proc_query.append(f"DELETE FROM {temp_table_schema}.{fin_table_name}\nWHERE {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} IN  (SELECT {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} FROM {temp_table_schema}.INCR1_{temp_table});")
    proc_query.append(fin_sql) 
    
    for table in incr_tables:
        sql = f"""

    INSERT INTO audit.reportingdb_audit_tbl_{temp_table}

    (

    SELECT

        '{temp_table}' as mart_table_name,

        '{table}' as src_table_name,

        coalesce( max(TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS')),(select max(max_update_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) max_update_date,

        CURRENT_TIMESTAMP as load_timestamp,

        coalesce(max(prev_updt_ts),(select max(source_reference_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) AS source_reference_date,

        max(nvl(batch_number,0))+1

    FROM {temp_table_schema}.{temp_table}_INCR where table_name = '{table}'

    );"""
        proc_query.append(sql)
        
    return base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema

def create_df(query, table_df_mapping, table_usage_count):
    script = []
    query = ' '.join(query.split()).strip()
    match = re.match(r'CREATE TABLE (\w+\.\w+\.\w+) AS (SELECT .+)', query, re.IGNORECASE)
    source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
    source_tables = [table for pair in source_tables for table in pair if table]

    if not match:
        raise ValueError('Invalid SQL')
    table_name = match.group(1).split('.')[2]
    select_statement = match.group(2)
    create_script = f'{table_name} = spark.sql(""" {select_statement} """)'
    persist_script = f'{table_name} = {table_name}.persist()'
    view_script = f'{table_name}.createOrReplaceTempView("{table_name}")'

    for table in source_tables:
        create_script = create_script.replace(table, table_df_mapping[table])

    script.append(f"\n\t\t######################---------Creating table {create_script.split('=')[0].strip()}-------############################")
    script.append(create_script)
    script.append(persist_script)
    script.append(view_script)
    script.append(f'''print("{create_script.split('=')[0].strip()} count: ", {create_script.split('=')[0].strip()}.count()''')

    if 'INCR2_' in table_name:
        x = table_name.split('INCR2_')[1]
        if x in table_details_mapping.keys():
            script.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################")
            script.append(f"{x}_max_update_date = INCR2_{x}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]")
            script.append(f"{x}_max_source_reference_date = INCR2_{x}.agg(max(to_timestamp('{table_details_mapping[x][1].replace(x+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]")
            script.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{x}',{x}_max_update_date,{x}_max_source_reference_date, max_batch_id, config)")
    script.append('\n')
    
    for table in source_tables:
        table_usage_count[table.split('.')[2]] -= 1

    for table in source_tables:
        if table_usage_count[table.split('.')[2]] == 0 and 'INCR1_' not in table:
            unpersist_script = f"{table.split('.')[2]}.unpersist()"
            script.append(unpersist_script)
    
    return '\n\t\t'.join(script)

def generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema):
    table_usage_count =  defaultdict(int)
    table_df_mapping = {}
    
    for query in proc_query:
        if 'CREATE TABLE' or 'DELETE' in query:
            source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
            source_tables = [table for pair in source_tables for table in pair if table]
            for table in source_tables:
                table_usage_count[table.split('.')[2]] += 1
                if 'DELETE' not in query:
                    table_df_mapping[table] = table.split('.')[2]
    
    script = []
    for query in proc_query:
        if 'CREATE TABLE' in query:
            script.append(create_df(query, table_df_mapping,table_usage_count))
    
    spark_query = []
    spark_query.append("\t\t######################---------Reading source data -------############################")
    for table in table_details_mapping.keys():
        spark_query.append(f'{table} = read_file(spark, config, \"{table}\").filter("{table_details_mapping[table][2]}")')
        spark_query.append(f'{table} = {table}.persist()')
        spark_query.append(f'{table}.createOrReplaceTempView("{table}")')
        spark_query.append(f'print("{table} count: ", {table}.count()')
        spark_query.append('\n')
    
    spark_query.append("\n\t\t######################---------Reading records-------############################")
    for table in table_details_mapping.keys():
        spark_query.append(f"{table}_max_update_date = read_max_update_date(redshift_conn, config['application_name'],'{table}', config)")
        spark_query.append(f'{table}_max_update_date = {table}_max_update_date[0][0]')
        spark_query.append('\n')
    
    incr1_spark = []
    temp_incr1 = []
    for _, group in incr_join_grps:
        for table in _.split():
            if base_table != table:
                join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')]
                join_keys = [t.strip() for t in ','.join(base_pk).split(',')]
                join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')]
                join_cond = split_join_condition(incr_table_join_info[table])
                join_condition = join_incr(join_cond)
                source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
                
                join_key_list = []
                for x in join_keys:
                    join_key_list.append(f'{base_table}.{x}')   
                join_key = ', '.join(join_key_list)
                
                for y in source_table:
                    sql = f"""SELECT {join_key} FROM {base_table} {base_table}"""
        
                    incr_join_text = ''
                    i=0
                    for i in range(len(join_condition)):
                        sql += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
                        incr_join_text += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}'
    
                    sql += f''' WHERE {join_tables[i+1]}._hoodie_commit_time > cast('"""+str({join_tables[i+1]}_max_update_date)+"""' as timestamp)'''
                    temp_incr1.append(sql)
            
            else:
                source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')]
                join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')]
                
                join_key_list = []
                for x in join_keys:
                    join_key_list.append(f'{base_table}.{x}')   
                join_key = ', '.join(join_key_list)
    
                sql = f'''SELECT {join_key} FROM {base_table} {base_table} WHERE {base_table}._hoodie_commit_time > cast('"""+str({base_table}_max_update_date)+"""' as timestamp)'''
                incr1_spark.append(sql)
    for i in temp_incr1:
        incr1_spark.append(i)
    incr1_spark = '\nUNION\n'.join(incr1_spark)
    spark_query.append("\n\t\t######################---------Creating INCR1-------############################")
    spark_query.append(f'INCR1_{temp_table} = spark.sql(""" {incr1_spark} """)')
    spark_query.append(f'\n\t\tINCR1_{temp_table} = INCR1_{temp_table}.dropDuplicates()')
    spark_query.append(f'INCR1_{temp_table} = INCR1_{temp_table}.persist()')
    spark_query.append(f'INCR1_{temp_table}.createOrReplaceTempView("INCR1_{temp_table}")')
    spark_query.append(f'print("INCR1_{temp_table} count: ", INCR1_{temp_table}.count())')
    
    spark_query.append("\n\t\t######################---------Creating INCR2-------############################")
    for table in table_details_mapping.keys():
        if table in incr_join.keys():
            p = [x for x in incr_join[table].split('\n\t') if len(x) > 1]
            if len(p) > 1:
                spark_query.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################")
                spark_query.append(f"{table}_max_update_date = {table}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]")
                spark_query.append(f"{table}_max_source_reference_date = {table}.agg(max(to_timestamp('{table_details_mapping[table][1].replace(table+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]")
                spark_query.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{table}',{table}_max_update_date,{table}_max_source_reference_date, max_batch_id, config)")
                spark_query.append('\n')
    
    for query in script:
        spark_query.append(query)
        spark_query.append('\n')
    
    spark_query1 = []
    spark_query1.append('\n')
    for query in proc_query:
        if f'{temp_table_schema}.{temp_table}\n' in query:
            final_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE)
            final_tables = [table.split('.')[2].strip() for pair in final_tables for table in pair if table and table.split('.')[2].strip() != temp_table][0]
            if 'INCR1_' in final_tables:
                spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['incr2df_path'])")
            else:
                spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['resultdf_path'])")
            spark_query1.append(f'''cur.execute(""" {query} """)''')
            spark_query1.append('\n')
    
    with open('template.txt') as file:
        template = file.read()
    
    result = template.replace('INSERT_CODE_1', '\n\t\t'.join(spark_query))
    result = result.replace('INSERT_CODE_2', '\t\t'.join(spark_query1))

    return result



st.set_page_config(page_title='AUTOMATED SOURCE TO TARGET MAPPING', layout= 'wide')
st.markdown("""

    <style>

    

           /* Remove blank space at top and bottom */ 

           .block-container {

               padding-top: 1.9rem;

               padding-bottom: 1rem;

            }

           

           /* Remove blank space at the center canvas */ 

           .st-emotion-cache-z5fcl4 {

               position: relative;

               top: -62px;

               }

           

           /* Make the toolbar transparent and the content below it clickable */ 

           .st-emotion-cache-18ni7ap {

               pointer-events: none;

               background: rgb(255 255 255 / 0%)

               }

           .st-emotion-cache-zq5wmm {

               pointer-events: auto;

               background: rgb(255 255 255);

               border-radius: 5px;

               }

    </style>

    """, unsafe_allow_html=True)
st.subheader('AUTOMATED SOURCE TO TARGET MAPPING')
mode= st.selectbox('Select Mode of Mapping',('Supervised Mapping(You Have Sufficient Sample Data in Target Template)', 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)'), index=None,placeholder='Select category of table')
if mode == 'Supervised Mapping(You Have Sufficient Sample Data in Target Template)':
    conn = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
                                        "Server=sql-ext-dev-uks-001.database.windows.net;"
                                        "Database=sqldb-ext-dev-uks-001;"
                                        "UID=dbadmin;"
                                        "PWD=mYpa$$w0rD" )
    query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC"
    table1=pd.read_sql_query(query1,con=conn)
    st.session_state.table1_un= table1
    table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str')
    colsel1,  colsel2= st.columns(2)
    with colsel1:
        table_selector=st.selectbox('SOURCE TABLE NAME',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],index=None,placeholder='Select table for automated column mapping')
    with colsel2:
        target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAAPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table')
        st.session_state.target_selector_un = target_selector
        #migrate_opt=st.toggle('DO YOU ALSO WANT TO MIGRATE DATA TO TARGET TABLE')
    if table_selector is not None and target_selector is not None:
        btn=button('RUN',key='RUN_GENAI_UN')
        if target_selector is not None and btn and f'{table_selector}_{target_selector}_map_un' not in st.session_state:
            query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+table_selector+"]"
            i_df = pd.read_sql_query(query2,con=conn)
            # conn.close()
            i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
            st.session_state['source_data_un'] = i_df
            #st.markdown('---')
            # st.subheader('Souce Data Preview')
            # st.dataframe(i_df)
            query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]"
            tgt_df=pd.read_sql_query(query3,con=conn).reset_index(drop=True)
            main_list=tgt_df.columns.to_list()
            sub_list=['ID','LOADID','FILE_NAME']
            if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
                tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
            st.session_state.opt_un= list(tgt_df.columns)
            st.session_state['target_data_un'] = tgt_df.head(20).reset_index()
            # if tgt:
            #     # st.subheader('Target Table Preview')
            #     # st.write(tgt_df.sample(20).reset_index(drop=True))
            #     # st.markdown('---')
            
            with st.spinner('Running data on neural network...'):
                df=pd.read_csv('C:\\Applications\\MARCO POLO O AIML\\DATA CATALOG\\pages\\CUSTOMER_MASTER_TRAIN_1306.csv') #POLICY
                cols=df.columns.tolist()
                data=pd.DataFrame(columns=['DATA','LABEL'])
                temp=pd.DataFrame(columns=['DATA','LABEL'])
                for x in cols:
                    temp['DATA']=df[x]
                    temp['LABEL']=x
                    data=pd.concat([data,temp],ignore_index=True)
                data['DATA']=data['DATA'].astype('string')
                data['LABEL']=data['LABEL'].astype('string')
                data=data.dropna()  
                data=data.reset_index(drop=True)
                
                
                
                
                #FEATURE_EXTRACTION BAG OF CHARACTERS
                vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(1, 3), min_df=1) 
                X=vectorizer.fit_transform(data['DATA'])
                feature=pd.DataFrame(data=X.toarray(),columns=vectorizer.get_feature_names_out())
                data1=pd.concat([data,feature],axis=1)
                
                #FEATURE_SELECTION
                from sklearn.feature_selection import chi2
                chi_x=data1.drop(['DATA','LABEL'],axis=1)
                chi_y=data1['LABEL']
                chi_scores=chi2(chi_x,chi_y)
                p_values=pd.Series(chi_scores[1],index=chi_x.columns)
                p_values=p_values.sort_values(ascending=True).reset_index()
                feature_chi=p_values['index'][:1000]
                data2=data1[feature_chi.to_list()]
                data2=pd.concat([data,data2],axis=1)
                
                #FEATURE EXTRACTION GENERAL
                def count_digits(str1):
                    return len("".join(re.findall("\d+", str1)))
                
                def count_vowels(string):
                    vowels = "aeiouAEIOU"
                    count = 0
                    for char in string:
                        if char in vowels:
                            count += 1
                    return count
                
                def count_special_character(string):
                    special_characters = "!@#$%^&*()-+?_=,<>/"
                    special_char = 0
                    for i in range(0, len(string)):
                        if (string[i] in special_characters):
                            special_char += 1
                    return special_char
                
                def count_spaces(string):
                    spaces = 0
                    for char in string:
                        if char == " ":
                            spaces += 1
                    return spaces
                
                data2['LENGTH']=data2['DATA'].apply(lambda x:len(x))
                data2['digit_c']=data2['DATA'].apply(lambda x:count_digits(x))
                data2['vowel_c']=data2['DATA'].apply(lambda x:count_vowels(x))
                data2['spchar_c']=data2['DATA'].apply(lambda x:count_special_character(x))
                data2['space_c']=data2['DATA'].apply(lambda x:count_spaces(x))
                
                chi_scores1=chi2(data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']],data2['LABEL'])
                p_values1=pd.Series(chi_scores1[1],index=data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']].columns).sort_values(ascending=True).reset_index()
                
                #MODEL
                import tensorflow as tf
                from tensorflow.keras import layers
                from tensorflow import keras
                
                from sklearn.model_selection import train_test_split
                from ast import literal_eval
                
                train_df, test_df = train_test_split(data2,test_size=.1,stratify=data2['LABEL'].values)
                val_df = test_df.sample(frac=0.5)
                test_df.drop(val_df.index, inplace=True)
                
                terms = tf.ragged.constant(data2['LABEL'].values)
                lookup = tf.keras.layers.StringLookup(output_mode="one_hot")
                lookup.adapt(terms)
                vocab = lookup.get_vocabulary()
                
                def invert_multi_hot(encoded_labels):
                    hot_indices = np.argwhere(encoded_labels == 1.0)[..., 0]
                    return np.take(vocab, hot_indices)
                
                max_seqlen = 150
                batch_size = 128
                padding_token = "<pad>"
                auto = tf.data.AUTOTUNE
                
                feature_tf=data2.columns.tolist()[2:]
                
                def make_dataset(dataframe,feature,batch_size,is_train=True):
                    labels = tf.ragged.constant(dataframe["LABEL"].values)
                    label_binarized = lookup(labels).numpy()
                    dataset = tf.data.Dataset.from_tensor_slices(
                        (dataframe[feature].values, label_binarized)
                    )
                    dataset = dataset.shuffle(batch_size * 10) if is_train else dataset
                    return dataset.batch(batch_size)
                
                train_dataset = make_dataset(train_df,feature_tf,batch_size, is_train=True)
                validation_dataset = make_dataset(val_df,feature_tf,batch_size, is_train=False)
                test_dataset = make_dataset(test_df,feature_tf,batch_size, is_train=False)
                
                
                shallow_mlp_model = keras.Sequential(
                    [
                        layers.Dense(512, activation="relu"),
                        layers.Dense(256, activation="relu"),
                        layers.Dense(lookup.vocabulary_size(), activation="softmax"),
                    ]  
                )
                
                shallow_mlp_model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["CategoricalAccuracy"])
                epochs=20
                history = shallow_mlp_model.fit(train_dataset, validation_data=validation_dataset, epochs=epochs)
                             
                #MODEL TEST
                _, category_acc = shallow_mlp_model.evaluate(test_dataset)
                
                
                #INPUT PREPROCESSING
                
                i_cols=i_df.columns
                i_cols=i_df.columns.tolist()
                i_data=pd.DataFrame(columns=['DATA','LABEL'])
                i_temp=pd.DataFrame(columns=['DATA','LABEL'])
                for x in i_cols:
                    i_temp['DATA']=i_df[x]
                    i_temp['LABEL']=x
                    i_data=pd.concat([i_data,i_temp],ignore_index=True)
                i_data['DATA']=i_data['DATA'].astype('string')
                i_data['LABEL']=i_data['LABEL'].astype('string')
                i_data=i_data.dropna()  
                i_data=i_data.reset_index(drop=True)
                i_X=vectorizer.transform(i_data['DATA'])
                i_feature=pd.DataFrame(data=i_X.toarray(),columns=vectorizer.get_feature_names_out())
                i_data1=pd.concat([i_data,i_feature],axis=1)
                i_data2=i_data1[feature_chi.to_list()]
                i_data2=pd.concat([i_data,i_data2],axis=1)
                i_data2['LENGTH']=i_data2['DATA'].apply(lambda x:len(x))
                i_data2['digit_c']=i_data2['DATA'].apply(lambda x:count_digits(x))
                i_data2['vowel_c']=i_data2['DATA'].apply(lambda x:count_vowels(x))
                i_data2['spchar_c']=i_data2['DATA'].apply(lambda x:count_special_character(x))
                i_data2['space_c']=i_data2['DATA'].apply(lambda x:count_spaces(x))
                i_run_dataset=tf.data.Dataset.from_tensor_slices((i_data2[feature_tf].values,lookup(tf.ragged.constant(i_data2["LABEL"].values)).numpy())).batch(649)
                
                
                i_predicted_probabilities = shallow_mlp_model.predict(i_run_dataset)
                i_predicted_labels = np.where(i_predicted_probabilities == i_predicted_probabilities.max(axis=1, keepdims=True), 1, 0)
                i_predicted_label_df=pd.DataFrame(i_predicted_labels,columns=vocab)
                i_predicted_label_df1=pd.concat([i_data,i_predicted_label_df],axis=1)
                i_predicted_label_df1['PREDICTION']=i_predicted_label_df1[vocab].idxmax(axis=1)
                i_result=i_predicted_label_df1[['DATA','LABEL','PREDICTION']]
                
                column_mapping=pd.DataFrame(columns=['source','target'])
                temp_column_mapping=pd.DataFrame(columns=['source','target'])
                for i in i_df.columns.to_list():
                    temp_df1=i_result.loc[i_result['LABEL']==i]
                    temp_max=temp_df1['PREDICTION'].value_counts().idxmax()
                    temp_column_mapping.loc[0]=[i,temp_max]
                    column_mapping=pd.concat([column_mapping,temp_column_mapping],ignore_index=True)
                not_null=i_df.count().reset_index()
                tot_rows=i_df.shape[0]
                not_null['not null percentage']=not_null[0]/tot_rows
                coltobemodified=not_null[not_null['not null percentage']<.05]['index'].to_list()
                column_mapping.loc[column_mapping['source'].isin(coltobemodified), 'target'] = '**TOO FEW COLUMN VALUES**'
            st.success('Mapping completed successfully!')
            st.session_state[f'{table_selector}_{target_selector}_map_un'] = column_mapping.copy()
            # st.subheader('MAPPED COLUMN')
            # st.dataframe(column_mapping)
        
            
        if f'{table_selector}_{target_selector}_map_un' in st.session_state and btn:
            taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview'])
            with tabb:
                st.subheader('Souce Data Preview')
                with stylable_container(
                key=f"source_container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                    st.dataframe(st.session_state['source_data_un'])
            with tabc:
                st.subheader('Target Table Preview')
                with stylable_container(
                key=f"target_container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                    st.write(st.session_state['target_data_un'])
            with taba:
                st.subheader("Mapping Generated:")
                with stylable_container(
                key=f"container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                   
                    edited_map_df =  st.data_editor(
                                                            st.session_state[f'{table_selector}_{target_selector}_map_un'],
                                                            column_config={
                                                                "target": st.column_config.SelectboxColumn(
                                                                    "Available Column Names",
                                                                    help="Please Verify/Change the Target Column Mapping",
                                                                    width="medium",
                                                                    options=st.session_state.opt_un,
                                                                    required=True,
                                                                )
                                                            },
                                                            hide_index=False,
                                                            num_rows = 'fixed',
                                                            use_container_width = True
                                                        )
                    val = button("Validate", key="Val_un")
                    if val:
                        st.session_state[f'{table_selector}_{target_selector}_map_un'].update(edited_map_df)
                        dup= len(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated()])
                        if dup != 0:
                            dup_index= list(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated(keep=False)].index)
                            dup_mess=str(dup_index[0])
                            for val in dup_index[1:]:
                                dup_mess = dup_mess + f' and {str(val)}'
                            st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}")
                        else:
                            st.success("Mapping Validated! You can proceed for Mapping")
                            
                            migrate= st.button("Mapping")
                            if migrate:
                                st.subheader('Mapping PHASE')
                                m_queiry1="select count(*) as TARGET_COUNT_CURRENT from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]"
                                #st.write(m_queiry1)
                                old_count=pd.read_sql_query(m_queiry1,con=conn)
                                st.write('RECORDS IN TARGET TABLE BEFORE Mapping',old_count)
                                with st.spinner('Mapping in progress...'):
                                    cursor1=conn.cursor()
                                    q1='INSERT INTO ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+st.session_state.target_selector_un+'] ("'
                                    q2=' select "'
                                    for i,x in enumerate(st.session_state['source_data_un'].columns.values.tolist()):
                                        t=st.session_state[f'{table_selector}_{target_selector}_map_un'].loc[st.session_state[f'{table_selector}_{target_selector}_map_un']['source']==x,'target'].values[0]
                                        if i==len(st.session_state['source_data_un'].columns.values.tolist())-1:
                                            q_temp1=t+'") '
                                            q_temp2=x+'" '
                                        else:
                                            q_temp1=t+'", "'
                                            q_temp2=x+'", "'
                                        q1=q1+q_temp1
                                        q2=q2+q_temp2
                                        #q_temp='INSERT INTO ['+ table1['TABLE_SCHEMA'][0]+'].['+target_selector+'] ("'+t+'") select "'+x+'" from ['+ table1['TABLE_SCHEMA'][0]+'].['+table_selector+']'
                                        # st.write(q)
                                    q=q1+q2+' from ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+table_selector+']'
                                    #st.write(q)
                                    cursor1.execute(q)
                                    conn.commit()
                                    # m_query2="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET ID=9999 WHERE ID IS NULL"
                                    # # cur_time=datetime.datetime.now().time().strftime("%Y%m%d%H%M%S")
                                    # m_query3="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET LOADID='LOADEDBYAI' WHERE LOADID IS NULL"
                                    # m_query4="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET FILE_NAME='AUTOMATED_INSERT' WHERE FILE_NAME IS NULL"
                                    # cursor1.execute(m_query2)
                                    # cursor1.execute(m_query3)
                                    # cursor1.execute(m_query4)
                                    # conn.commit()
                                st.success('Mapping completed successfully!')
                                m_query5="select count(*) as TARGET_COUNT_AFTER_Mapping from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]"
                                new_count=pd.read_sql_query(m_query5,con=conn)
                                conn.close()
                                st.write('RECORDS IN TARGET TABLE AFTER Mapping',new_count)



if mode == 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)':
    conn = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
                                        "Server=sql-ext-dev-uks-001.database.windows.net;"
                                        "Database=sqldb-ext-dev-uks-001;"
                                        "UID=dbadmin;"
                                        "PWD=mYpa$$w0rD" )
    query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC"
    table1=pd.read_sql_query(query1,con=conn)
    st.session_state.table1= table1
    table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str')
    #col2sel1, col2sel2 = st.columns(2)
    
    table_selector=st.multiselect('SOURCE TABLE NAME(S)',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],default=None,placeholder='Select table for automated column mapping')
    
    #target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAPPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table')
    
    target_selector = st.file_uploader("UPLOAD TARGET METADATA FILE", type=['csv'])
    tgt_name=None
    mapping_df=None
    if target_selector is not None:
        mapping_df = pd.read_csv(target_selector)
        tgt_name = target_selector.name

        required_columns = ['Field_Name', 'Primary Key']
        if all(col in mapping_df.columns for col in required_columns):
            field_names = mapping_df['Field_Name'].tolist()
            tgt_df = pd.DataFrame(columns=field_names)

    st.session_state.target_selector = target_selector
    # mapping_selector = target_selector
    # st.session_state.mapping_selector = mapping_selector
    if mapping_df is not None:
        st.session_state.mapping_df = mapping_df

    if table_selector is not None:
        if len(table_selector)==1:
            query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+str(table_selector[0])+"]"
            i_df = pd.read_sql_query(query2,con=conn)
            # conn.close()
            if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns):
                i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
        elif len(table_selector)>1:

            dataframes = {}
            col_names = []
            for tab in table_selector:
                query2_2= "select * from [dbo].["+tab+"]"
                dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn)
                col_names = col_names + list(dataframes[f'{tab}'].columns)

            tab_names = table_selector
            metadata = MultiTableMetadata()
            metadata.detect_from_dataframes(
                data= dataframes
            )
            multi_python_dict = metadata.to_dict()

            rlist1=multi_python_dict['relationships']
            relationships=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT PRIMARY KEY','CHILD FOREIGN KEY'])
            for i in range(len(rlist1)):
                rlist=rlist1[i]
                nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT PRIMARY KEY':rlist['parent_primary_key'],'CHILD FOREIGN KEY':rlist['child_foreign_key']},index=[i])
                relationships=pd.concat([relationships,nrow],ignore_index=True)

            filtered_relationships = relationships[
                (relationships['PARENT TABLE'].isin(table_selector)) & 
                (relationships['CHILD TABLE'].isin(table_selector))
            ]

            i_df = pd.DataFrame()

            for _, row in filtered_relationships.iterrows():
                parent_table = row['PARENT TABLE']
                child_table = row['CHILD TABLE']
                parent_key = row['PARENT PRIMARY KEY']
                child_key = row['CHILD FOREIGN KEY']
                
                if parent_table in dataframes and child_table in dataframes:
                    parent_df = dataframes[parent_table]
                    child_df = dataframes[child_table]
                    
                    left_joined_df = pd.merge(
                        parent_df, child_df, how='left', 
                        left_on=parent_key, right_on=child_key, 
                        suffixes=(f'_{parent_table}', f'_{child_table}')
                    )

                    for col in child_df.columns:
                        if col != child_key:
                            left_joined_df.rename(
                                columns={col: f'{col}_{parent_table}_{child_table}'}, inplace=True
                            )

                    right_joined_df = pd.merge(
                        parent_df, child_df, how='left', 
                        left_on=child_key, right_on=parent_key, 
                        suffixes=(f'_{child_table}', f'_{parent_table}')
                    )

                    for col in child_df.columns:
                        if col != child_key:
                            left_joined_df.rename(
                                columns={col: f'{col}_{child_table}_{parent_table}'}, inplace=True
                            )

                    i_df = pd.concat([i_df, left_joined_df, right_joined_df], ignore_index=True)

            i_df = i_df.loc[:, ~i_df.columns.duplicated()]

            for table_name in table_selector:
                if table_name in dataframes:
                    for col in dataframes[table_name].columns:
                        if col in i_df.columns and not any([col.endswith(f'_{table_name}') for table in table_selector]):
                            i_df.rename(columns={col: f'{col}_{table_name}'}, inplace=True)

            if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns):
                i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1)

            i_df = i_df.loc[:, ~i_df.columns.duplicated()]


    if table_selector is not None:
       if tgt_name is not None:
        btn= button('RUN', key='RUN_GENAI')
        
        if target_selector is not None and btn and f'{table_selector}_{tgt_name}_map' not in st.session_state:
            st.session_state['source_data'] = i_df.sample(20).reset_index()
            if target_selector is not None:
                #query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]"
                #tgt_df=pd.read_sql_query(query3,con=conn)
                # if set(['ID','LOADID','FILE_NAME']).issubset(tgt_df.columns):
                #     tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1)
                st.session_state['opt'] = list(tgt_df.columns)
                st.session_state['target_data'] = tgt_df.head(20).reset_index()
            
            with st.spinner('Processing Data...'):
                selected_df = pd.DataFrame()
                #st.write(i_df)
                # Iterate through each column
                for col in i_df.columns:
                    # Filter non-null and non-blank values
                    non_null_values = i_df[col][i_df[col] != ''].dropna().astype(str).str.strip().unique()
                    
                    # Select up to 10 values (or fewer if less than 10 non-null values)
                    selected_values = list(non_null_values[:10])
                    selected_values = selected_values + [""] * (10 - len(selected_values))
                    # Add selected values to the new dataframe
                    selected_df[col] = selected_values

                mapping_df = st.session_state.mapping_df
                # List of tables provided
                tables_list = table_selector

                # Dictionary to store the table columns
                table_columns = {}

                # Loop through each table in the list
                for table in tables_list:
                    query = f"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '{table}'"
                    
                    cursor = conn.cursor()
                    cursor.execute(query)
                    
                    # Fetch the column names for the current table
                    columns = [row[0] for row in cursor.fetchall()]
                    
                    # Store the column names in the dictionary
                    table_columns[table] = columns
                
                if 'table_columns' not in st.session_state:
                    st.session_state.table_columns = table_columns

                story =  f""" Details of the source table: 

                            table columns: {str(list(i_df.columns))}

                            column datatypes: {str(i_df.dtypes.to_string())}

                            table sample data: {selected_df.head(10).to_string()}

                            Source Tables selected : {str(list(table_selector))}

                            Source Table columns are given as (col_name)_(table_name)



                            Joining conditions should be based on relationship table which is : {relationships.to_string()}

                            

                            Details of the target table: 

                            table columns: {str(list(tgt_df.columns))}

                            column datatypes: {str(tgt_df.dtypes.to_string())}

                            table sample data: {tgt_df.head(10).to_string()}

                            mapping details: {mapping_df.to_string()}



                            Source Column names should match from this dictionary:  {str(table_columns)}

                            """
                response = model.generate_content(
                                textwrap.dedent("""

                                    Please return JSON describing the possible **one to one mapping** between source table and target table using this following schema:

                            

                                    {"Mapping": list[MAPPING]}

                            

                                    MAPPING = {"Target_Table": str, "Field_Name": str, "Source Table": str, "Source Column": str, "Joining Keys": str, "Primary Key": str, "Direct/Derived": str, "Join Tables": str, "Join Condition": str, "Mapping Confidence": percentage, "Column Operations": str,	"Alias": str, "Granularity": str, "Filter Condition": str, "Clauses": str, "Ordering": str}



                                    The first six columns are provided in mapping details. **THE FIRST SIX COLUMNS OF JSON SHOULD HAVE EXACTLY SAME VALUES AS PROVIDED IN MAPPING DETAILS**

                                    **THE PRIMARY KEY IS COMING FROM THE PARENT TABLE. IF SOURCE TABLE IS NOT THE PRIMARY KEY TABLE, THEN 'Direct/Derived' SHOULD BE LABELLED AS DERIVED, OTHERWISE DIRECT**

                                    **JOIN TABLES SHOULD BE WRITTEN ONLY IN CASE OF DERIVED LABEL, JOIN TABLES SHOULD BE THE PARENT TABLE AND THE SOURCE TABLE (IF DIFFERENT)**

                                    **JOINING CONDITION SHOULD BE BASED ON THE TABLE AND COULMN WHICH HAS PRIMARY KEY AND JOINING TYPE SHOULD BE LEFT OUTER**

                                    **ALIAS SHOULD BE SAME AS FIELD_NAME, GRANULARITY SHOULD BE 1:1**



                                    1. For example, Field_Name is 'Product Name', Source Table is 'TRM', Source Column is 'PRODUCT_NAME', 'Joining Keys':'PRODUCT_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TRM', 'Join Condition':'TPM.PRODUCT_ID=TRM.PRODUCT_ID', 'Alias': 'PRODUCT_NAME', 'Granularity': '1:1'}

                                    Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.PRODUCT_ID = TRM.PRODUCT_ID is joining condition

                                    

                                    2. For example, Field_Name is 'Office Code', Source Table is 'TPM', Source Column is 'OFFICE_CD', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DIRECT', 'Join Type':None, 'Join Tables':None, 'Join Condition':None, 'Alias': 'OFFICE_CD', 'Granularity': '1:1'}

                                    Joining is not done since TPM is the parent table. So, 'Direct/Derived": 'DIRECT'. POLICY_ID is the primary key here.

                                    

                                    3. For example, Field_Name is 'Policy Submission Date', Source Table is 'TSM', Source Column is 'POLICY_SUBMISSION_DT', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TSM', 'Join Condition':'TPM.POLICY_ID=TRM.POLICY_ID', 'Alias': 'POLICY_SUBMISSION_DT', 'Granularity': '1:1'}

                                    Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.POLICY_ID = TRM.POLICY_ID is joining condition

                                    

                                    If Source Column is POLICY_ID_TPM, then change it to POLICY_ID. 

                                    **Source Column should not contain the '_TPM', '_TRM', '_TSM', '_TPP' part at the end.**



                                    All Target fields are required. The JSON keys will be same as the column names in mapping details.Validate the mapping as given in mapping details.

                                    Ignore the columns where hardcoded values are there , such as Current Flag, Start Date, End Date, Etl Job ID,Etl Batch ID,Etl Inserted Date,Etl Updated Date. leave them blank. For other fields, there has to be mapping.



                                    If you are confused on which source tables to map, then provide MAPPING CONFIDENCE LESS THAN 90



                                    ALL THE JSON KEYS ARE MANDATORY: 'Target_Table', 'Field_Name', 'Source Table', 'Source Column',	'Joining Keys', 'Primary Key', 'Direct/Derived', 'Join Type', 'Join Tables', 'Join Condition', 'Mapping Confidence', 'Column Operations',	'Alias', 'Granularity', 'Filter Condition', 'Clauses', 'Ordering'



                                    Important: Only return a single piece of valid JSON text. All fields are required. Please MAP all ***TARGET fields***. If you struggle to map then give low confidence score but YOU HAVE TO MAP ANYWAY. ****MAKE SURE IT IS A **one to one mapping** ****

                            

                                    Here is the table details:

                            

                                    """) + story
                            )
               
                
                res= response.text.replace("\n", '').replace("`", '').replace('json','')
                map = print(json.dumps(json.loads(res), indent=2))
                data = json.loads(res)
                map_df = pd.json_normalize(data, record_path=['Mapping'])
                st.session_state[f'{table_selector}_{tgt_name}_map'] = map_df.copy()
            
            
        if f'{table_selector}_{tgt_name}_map' in st.session_state and btn:
            taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview'])
            with tabc:
                st.subheader('Target Table Preview')
                with stylable_container(
                key=f"source_container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                    st.dataframe(st.session_state['target_data'].head(0))
            with tabb:
                st.subheader('Source Table Preview')
                with stylable_container(
                key=f"target_container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                    st.write(st.session_state['source_data'])
            with taba:
                st.subheader("Most Probable Mapping Generated:")
                with stylable_container(
                key=f"container_with_border",
                css_styles="""

                {

                border: 1px solid white;

                border-radius: 0.5rem;

                padding: calc(1em - 1px);

                width: 103%; /* Set container width to 100% */

                }

                """
                ):
                    edited_map_df =  st.data_editor(
                                                            st.session_state[f'{table_selector}_{tgt_name}_map'],
                                                            column_config={
                                                                "Target Column Name": st.column_config.SelectboxColumn(
                                                                    "Target Columns",
                                                                    help="Please Verify/Change the Target Column Mapping",
                                                                    width="medium",
                                                                    options=st.session_state.opt,
                                                                    required=True,
                                                                )
                                                            },
                                                            hide_index=False,
                                                            num_rows = 'dynamic',
                                                            use_container_width = True
                                                        )

                    success_show=1
                    if success_show==1:
                        st.success(f"{(edited_map_df['Mapping Confidence']>90).mean().round(2)*100}% of Columns Mapped with more than 90% Mapping Confidence")

                    mapped_uploader = st.file_uploader("UPLOAD REVISED MAPPING (OPTIONAL)", type=['csv'])
                    if mapped_uploader is not None:
                        success_show=0
                        edited_map_df = pd.read_csv(mapped_uploader)
                        st.write(edited_map_df)
                        st.success("Mapping Revised!")
                    
                    val = button("Validate", key="Val")
                    if val:
                        st.session_state[f'{table_selector}_{tgt_name}_map'].update(edited_map_df)
                        dup= len(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Field_Name'].duplicated()])
                        
                        error_messages = []
                        table_columns = st.session_state.table_columns

                        for _, (index, row) in enumerate(edited_map_df.iterrows()):
                            source_table = row['Source Table']
                            source_column = row['Source Column']
                            
                            if source_column not in table_columns.get(source_table, []) and (source_column is not None) and (source_table is not None) and (source_table in table_selector):
                                error_messages.append(f"Column '{source_column}' not found in table '{source_table}'.\n")

                        # Output success or error messages
                        if error_messages:
                            validation_result = "\n".join(error_messages)
                        else:
                            validation_result = "Success"

                        if dup != 0:
                            dup_index= list(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Target Column Name'].duplicated(keep=False)].index)
                            dup_mess=str(dup_index[0])
                            for val in dup_index[1:]:
                                dup_mess = dup_mess + f' and {str(val)}'
                            st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}")
                        elif validation_result != "Success":
                             st.error(validation_result)
                        else:
                            st.success("Mapping Validated!")

                            df_tbl_dtls = pd.read_csv(r'tbl_dtl.csv')

                            with pd.ExcelWriter('Final.xlsx') as writer:
                                edited_map_df.to_excel(writer, sheet_name='POLICY', index=False)
                                df_tbl_dtls.to_excel(writer, sheet_name='Table Details', index=False)

                            path = 'Final.xlsx'

                            temp_table = None
                            for x in pd.ExcelFile(path).sheet_names:
                                if x != 'Table Details':
                                    temp_table = x

                            df = read_excel(path, temp_table)
                            table_details_df = read_excel(path, 'Table Details')
                            table_details_mapping = table_details_df.set_index('Table Name')[['ETL Timestamp','Change Timestamp','ETL Filter']].T.to_dict('list')
                            
                            base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema = generate_sql(temp_table)
                            sql_query = ''
                            for x in proc_query:
                                sql_query += x
                                sql_query += '\n'
                            spark_sql = generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema)
                            
                            #out=edited_map_df.to_csv().encode('utf-8')
                            col21, col22= st.columns([1,4])
                            with col21:
                                st.download_button('Download SQL Statement', sql_query, file_name='sql_code.txt')
                            with col22:
                                st.download_button('Download Spark Statement', spark_sql, file_name='spark_code.txt')
                            #st.download_button(label='DOWNLOAD MAPPING',data=out, file_name='S2T_Mapping.csv',mime='csv')