File size: 11,708 Bytes
c08a470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import traceback
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark.sql.functions import col,regexp_replace, concat_ws, when, collect_list, lit, to_timestamp
from pyspark.sql.functions import year, month, date_format
from pyspark.sql import functions as F
from pyspark.sql.types import LongType,DecimalType,IntegerType,TimestampType,DoubleType
from pyspark.sql.functions import *
from pytz import timezone
from datetime import datetime,timedelta
from pyspark.sql.window import Window
import json
import sys
import logging
import datetime
import time
import os
import psycopg2
import requests
from requests.auth import HTTPBasicAuth
import base64
import functools
import boto3

# adding '/home/hadoop' path of emr master instance as our downloaded packages will be present at this path
sys.path.append('/home/hadoop')

curr_time = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
log_file_name = 'job_' + str(datetime.datetime.now().strftime('%Y%m%d_%H%M%S_%f')) + '.log'
extra = {'log_file_name': log_file_name}
logger = logging.getLogger(__name__)
syslog = logging.FileHandler(log_file_name, mode='w')
formatter = logging.Formatter('%(log_file_name)s;%(asctime)s;%(levelname)s;%(message)s')
syslog.setFormatter(formatter)
logger.setLevel(logging.INFO)
logger.addHandler(syslog)
logger = logging.LoggerAdapter(logger, extra)

def read_config(config_path):
    logger.info("Inside read config")
    try:
        # checking if config path provided as input is s3 path or file system path
        if config_path[0:2] == 's3':
            # read config file from s3
            logger.info("Reading config file from S3")
            s3 = boto3.resource('s3')
            file_object = s3.Object(config_path.split('/')[2], '/'.join(config_path.split('/')[3:]))
            file_content = file_object.get()['Body'].read().decode('utf-8')
            # converting file content to json format
            json_content = json.loads(file_content)
            json_object = json.dumps(json_content)
        else:
            # reading config file from system
            logger.info("Reading config file from path : " + config_path)
            # converting file content to json format
            json_content = json.load(open(config_path, 'r'))
            json_object = json.dumps(json_content)
            logger.info("Input Config Details:")
        logger.info(json_object)
        return json_content
    except Exception as e:
        raise Exception("Error reading config.")

def get_secret(secret):
    secret_name = secret
    region_name = "ap-south-1"

    session = boto3.session.Session()
    client = session.client(
    service_name='secretsmanager',
    region_name=region_name,
    )

    try:
        get_secret_value_response = client.get_secret_value(SecretId=secret_name)
    except ClientError as e:
        if e.response['Error']['Code'] == 'ResourceNotFoundException':
            print("The requested secret " + secret_name + " was not found")
        elif e.response['Error']['Code'] == 'InvalidRequestException':
            print("The request was invalid due to:", e)
        elif e.response['Error']['Code'] == 'InvalidParameterException':
            print("The request had invalid params:", e)
        elif e.response['Error']['Code'] == 'DecryptionFailure':
            print("The requested secret can't be decrypted using the provided KMS key:", e)
        elif e.response['Error']['Code'] == 'InternalServiceError':
            print("An error occurred on service side:", e)
    else:
	# Secrets Manager decrypts the secret value using the associated KMS CMK
	# Depending on whether the secret was a string or binary, only one of these fields will be populated
        if 'SecretString' in get_secret_value_response:
            text_secret_data = get_secret_value_response['SecretString']
            return text_secret_data
        else:
            binary_secret_data = get_secret_value_response['SecretBinary']
            return binary_secret_data
    logger.info("Secret manager read complete")
			
def create_spark_session(config):
    logger.info("Inside create spark session")
    try:
        conf = SparkConf()

        # setting spark configuration properties provided in config file
        spark_conf = dict(config['spark_properties'])
        for key in spark_conf.keys():
            conf.set(key, spark_conf[key])
            logger.info("Secret manager read")
        if 'application_name' in list(config.keys()):
            if config['application_name'] != '':
                app_name = config['application_name']
            else:
                app_name = 'DefaultApp'
        else:
            app_name = 'DefaultApp'
        logger.info("Secret manager read start")
        # creating spark session
        spark = SparkSession.builder.config(conf=conf).appName(app_name).enableHiveSupport().getOrCreate()
        spark.sparkContext.setLogLevel("ERROR")
        spark.conf.set("spark.sql.autoBroadcastJoinThreshold",-1)
        spark.conf.set("spark.sql.legacy.parquet.datetimeRebaseModeInRead",'LEGACY')
        spark.conf.set("spark.sql.legacy.timeParserPolicy",'CORRECTED')
        spark.conf.set("spark.sql.legacy.parquet.int96RebaseModeInWrite",'CORRECTED')
        spark.conf.set("spark.sql.legacy.parquet.datetimeRebaseModeInWrite",'CORRECTED')
        spark.conf.set("spark.sql.legacy.parquet.int96RebaseModeInRead",'CORRECTED')
        spark.conf.set("spark.sql.shuffle.partitions",100)
        logger.info("Spark session object created")
        return spark
    except Exception as e:
        raise Exception("Error in Spark Session Creation.")
        
def read_file(spark,config,table):
    readOptions = {
      'hoodie.datasource.query.type': 'incremental',
      'hoodie.datasource.hive_sync.support_timestamp': 'true'
    }
    path = config['Paths'][table]
    df=spark.read.format("hudi").load(path)
    df =df.withColumn('_hoodie_commit_time',to_timestamp(F.concat(F.substring(col('_hoodie_commit_time'),1,4),F.lit('-'),\
                                                                                   F.substring(col('_hoodie_commit_time'),5,2),F.lit('-'),\
                                                                                   F.substring(col('_hoodie_commit_time'),7,2),F.lit(' '),\
                                                                                   F.substring(col('_hoodie_commit_time'),9,2),F.lit(':'),\
                                                                                   F.substring(col('_hoodie_commit_time'),11,2),F.lit(':'),\
                                                                                   F.substring(col('_hoodie_commit_time'),13,2)\
                                                                                  )))
    return df

def get_max_audit_batch(conn,job_name, config):
    cur = conn.cursor()
    cur.execute("SELECT COALESCE(MAX(COALESCE(BATCH_ID,0)),0)+1 FROM "+config['audit_table'])
    result = cur.fetchall()[0][0]
    logger.info("Maximum batch id in Audit Table is :"+str(result))
    return result

def read_max_update_date(conn, job_name, table, config):
    try:
        cur = conn.cursor()
        cur.execute("SELECT MAX(max_update_date) from "+config['audit_table']+" WHERE mart_table_name = '"+job_name+"' AND src_table_name = '"+table+"'")
        query_results = cur.fetchall()
    except Exception as e:
        print("Database connection failed due to {}".format(e))
        raise Exception("Error reading audit table.")
    return query_results
    logger.info("Reading max of max_update_date from audit table complete")

def insert_max_update_date(spark,conn, job_name, table, max_update_date,source_reference_date, max_batch_id, config):
    try:
        cur = conn.cursor()
        cur.execute("INSERT INTO "+config['audit_table']+"(mart_table_name, src_table_name, max_update_date, load_timestamp,source_reference_date,batch_id) VALUES ('"+str(job_name)+"', '"+str(table)+"', '"+str(max_update_date)+"', SYSDATE ,'"+str(source_reference_date)+"' as source_reference_date,cast('"+str(max_batch_id)+"' as int) as batch_id)")

    except Exception as e:
        print("Database connection failed due to {}".format(e))
        raise Exception("Error Updating audit table.")
    logger.info("Inserting max max_update_date  into audit table complete")
	
def write_file(spark,conn,redshift_iam_role,resultdf_path, config, table_name):
    #Writing resultant data into incr table using copy command
    logger.info("write data to redshift started")
    try:
        cur = conn.cursor()
        cur.execute(f"""Truncate table int.{table_name};commit;""" )
        sql="""COPY %s FROM '%s' credentials 'aws_iam_role=%s' FORMAT PARQUET; commit;""" % \
             (f"int.{table_name}", resultdf_path,redshift_iam_role)
        cur.execute(sql)
 
    except Exception as e:
        print("Database connection failed due to {}".format(e))
        raise Exception("Error Inserting target table.")
    print("write complete")
    logger.info("upsert data to rds completed")

def main():
    logger.info("Inside main function")
    if len(sys.argv) != 2:
        logger.info(len(sys.argv))
        logger.info("Command line arguments : " + str(sys.argv))
        logger.info("Incorrect command line arguments.")
        exit(1)

    config = {}
    spark = ''
    job_status = ''

    try:
        # reading json config file
        logger.info("Calling function to read config file")
        config = read_config(sys.argv[1])
        logger.info("Calling function to create Spark session object")
        #creating spark session
        spark = create_spark_session(config)
        logger.info("Calling function to read input file")
        start_time = datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S')
        
        #creating redshift database connection
        redshift_secret = get_secret(config['redshift_secret'])
        redshift_secret = json.loads(redshift_secret)
        redshift_user = redshift_secret['username']
        redshift_pwd = redshift_secret['password']
        redshift_host = redshift_secret['host']
        redshift_port = str(redshift_secret['port'])
        redshift_dbname = redshift_secret['dbname']
        #creating database connection
        redshift_conn=psycopg2.connect(dbname=redshift_dbname, host=redshift_host, port=redshift_port, user=redshift_user, password=redshift_pwd)
        redshift_dburl = "jdbc:postgresql://"+redshift_host+":"+redshift_port+"/"+redshift_dbname
        cur = redshift_conn.cursor()
        max_batch_id = get_max_audit_batch(redshift_conn, config['application_name'], config)

        INSERT_CODE_1        
        
        #writing from parquet to table in database
        write_file(spark, redshift_conn, config['redshift_iam_role'],config['incr2df_path'],config, config['incr2df']) 
        write_file(spark, redshift_conn, config['redshift_iam_role'],config['resultdf_path'],config, config['resultdf'])
        
        INSERT_CODE_2
        
        print('Run Successful')
        print('End of Code')

    
    except Exception as e:
        #job gets error
        job_status = 'Failed'
        print(e)

    finally:
        spark.catalog.clearCache()
        redshift_conn.commit()
        redshift_conn.close()
        spark.stop()
 

if __name__ == "__main__":
    # calling main function
    logger.info("Calling main function")
    main()