|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import networkx as nx |
|
import numpy as np |
|
import streamlit as st |
|
import sdv |
|
from sdv.datasets.local import load_csvs |
|
from sdv.metadata import MultiTableMetadata |
|
from sdv.multi_table import HMASynthesizer |
|
import time |
|
import os |
|
import gc |
|
import warnings |
|
from PIL import Image |
|
from sdv.metadata import SingleTableMetadata |
|
import pyodbc |
|
import google.generativeai as genai |
|
from google.generativeai.types import HarmCategory, HarmBlockThreshold |
|
import textwrap |
|
from streamlit_extras.stylable_container import stylable_container |
|
from streamlit_extras.stateful_button import button |
|
import json |
|
from io import BytesIO |
|
|
|
import os |
|
import subprocess |
|
|
|
|
|
subprocess.run([ |
|
"apt-get", "update" |
|
]) |
|
subprocess.run([ |
|
"apt-get", "install", "-y", "curl", "apt-transport-https" |
|
]) |
|
subprocess.run([ |
|
"curl", "https://packages.microsoft.com/keys/microsoft.asc", "|", "apt-key", "add", "-" |
|
]) |
|
subprocess.run([ |
|
"curl", "https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/prod.list", |
|
"|", "tee", "/etc/apt/sources.list.d/mssql-release.list" |
|
]) |
|
subprocess.run([ |
|
"apt-get", "update" |
|
]) |
|
subprocess.run([ |
|
"ACCEPT_EULA=Y apt-get install -y msodbcsql17 unixodbc-dev" |
|
]) |
|
|
|
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w') |
|
genai_mod = genai.GenerativeModel( |
|
model_name='models/gemini-pro' |
|
) |
|
|
|
st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide') |
|
st.markdown(""" |
|
<style> |
|
|
|
/* Remove blank space at top and bottom */ |
|
.block-container { |
|
padding-top: 2rem; |
|
} |
|
|
|
/* Remove blank space at the center canvas */ |
|
.st-emotion-cache-z5fcl4 { |
|
position: relative; |
|
top: -62px; |
|
} |
|
|
|
/* Make the toolbar transparent and the content below it clickable */ |
|
.st-emotion-cache-18ni7ap { |
|
pointer-events: none; |
|
background: rgb(255 255 255 / 0%) |
|
} |
|
.st-emotion-cache-zq5wmm { |
|
pointer-events: auto; |
|
background: rgb(255 255 255); |
|
border-radius: 5px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
def clear_cache(): |
|
if 'rdf' in st.session_state: |
|
st.session_state.pop('rdf') |
|
|
|
def create_er_diagram(df): |
|
G = nx.DiGraph() |
|
|
|
|
|
table_columns = {} |
|
|
|
|
|
for _, row in df.iterrows(): |
|
parent_table = row['PARENT TABLE'] |
|
child_table = row['CHILD TABLE'] |
|
parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN'] |
|
child_fk = row['CHILD TABLE RELATIONSHIP COLUMN'] |
|
cardinality = row.get('CARDINALITY', '1:N') |
|
|
|
|
|
if parent_table not in table_columns: |
|
table_columns[parent_table] = [] |
|
table_columns[parent_table].append(parent_pk) |
|
|
|
if child_table not in table_columns: |
|
table_columns[child_table] = [] |
|
table_columns[child_table].append(child_fk) |
|
|
|
|
|
G.add_node(parent_table) |
|
G.add_node(child_table) |
|
G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}') |
|
|
|
return G, table_columns |
|
|
|
def draw_er_diagram(G, table_columns): |
|
pos = nx.spring_layout(G, k=1.5, iterations=50) |
|
|
|
plt.figure(figsize=(8, 8)) |
|
nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True) |
|
|
|
|
|
for node, (x, y) in pos.items(): |
|
plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center') |
|
|
|
|
|
for node, columns in table_columns.items(): |
|
x, y = pos[node] |
|
column_text = '\n'.join(columns) |
|
plt.text(x, y, column_text, fontsize=6, ha='center', va='center') |
|
|
|
|
|
edge_labels = nx.get_edge_attributes(G, 'label') |
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6) |
|
st.subheader("Schematic Representation") |
|
with st.container(border=True, height= 350): |
|
st.pyplot(plt) |
|
img_bytes = BytesIO() |
|
plt.savefig(img_bytes, format='png') |
|
img_bytes.seek(0) |
|
return img_bytes |
|
|
|
def cardinality(parent_df, child_df, parent_column, child_column): |
|
|
|
is_parent_unique = parent_df[parent_column].is_unique |
|
|
|
|
|
is_child_unique = child_df[child_column].is_unique |
|
|
|
|
|
if is_parent_unique and is_child_unique: |
|
return '1:1' |
|
elif is_parent_unique and not is_child_unique: |
|
return '1:N' |
|
elif not is_parent_unique and is_child_unique: |
|
return 'N:1' |
|
else: |
|
return 'N:N' |
|
|
|
|
|
st.subheader('SELECT SOURCE') |
|
selectcol11, selectcol12 = st.columns(2) |
|
with selectcol11: |
|
select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache) |
|
with selectcol12: |
|
select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache) |
|
if select1 =='DB_10001' and select2 is not None: |
|
with st.spinner("Loading Tables:"): |
|
conn1 = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};" |
|
"Server=sql-ext-dev-uks-001.database.windows.net;" |
|
"Database=sqldb-ext-dev-uks-001;" |
|
"UID=dbadmin;" |
|
"PWD=mYpa$$w0rD" ) |
|
|
|
query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC" |
|
st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME']) |
|
|
|
table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache) |
|
sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache) |
|
|
|
discover= button("Discover", key='discover') |
|
|
|
if discover: |
|
if sample_selector=='100': |
|
count="top 100" |
|
elif sample_selector=='10K': |
|
count="top 10000" |
|
elif sample_selector=='100K': |
|
count="top 100000" |
|
elif sample_selector=='1M': |
|
count="top 1000000" |
|
else: |
|
count="" |
|
|
|
query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+") ORDER BY TABLE_NAME ASC" |
|
st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME']) |
|
st.session_state.dataframes = {} |
|
st.session_state.col_names = [] |
|
for tab in st.session_state.tab_names: |
|
query2_2= "select "+count+" * from ["+select2+"].["+tab+"]" |
|
st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1) |
|
st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns) |
|
|
|
|
|
tab_names = st.session_state.tab_names |
|
dataframes = st.session_state.dataframes |
|
col_names = st.session_state.col_names |
|
metadata = MultiTableMetadata() |
|
metadata.detect_from_dataframes( |
|
data= st.session_state.dataframes |
|
) |
|
multi_python_dict = metadata.to_dict() |
|
|
|
st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.") |
|
|
|
tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"]) |
|
def view_callback(): |
|
st.session_state.tdet = False |
|
with tab1: |
|
|
|
st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME']) |
|
containter_length = (len(st.session_state.table_list) + 1)*35 |
|
tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values) |
|
tabs2= st.tabs(tab_names_shown) |
|
for i, tab in enumerate(tabs2): |
|
with tab: |
|
with st.container(height= 400, border=True): |
|
cole1,cole2=st.columns([1,1.5]) |
|
with cole1: |
|
conn = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};" |
|
"Server=sql-ext-dev-uks-001.database.windows.net;" |
|
"Database=sqldb-ext-dev-uks-001;" |
|
"UID=dbadmin;" |
|
"PWD=mYpa$$w0rD" ) |
|
table_selector= tab_names_shown[i] |
|
if table_selector is not None: |
|
query2="select "+count+" * from [dbo].["+table_selector+"]" |
|
|
|
df = st.session_state.dataframes[table_selector] |
|
selected_df = pd.DataFrame() |
|
for col in df.columns: |
|
|
|
non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip() |
|
|
|
|
|
selected_values = list(non_null_values[:10]) |
|
selected_values = selected_values + [""] * (10 - len(selected_values)) |
|
|
|
selected_df[col] = selected_values |
|
|
|
null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1] |
|
null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n" |
|
for col in null_columns[:-1]: |
|
null_mes += f":orange[**{col}**]" + ', ' |
|
for collast in null_columns[-1:]: |
|
if len(null_columns)> 1: |
|
null_mes += '**and** ' + f":orange[**{collast}**]" |
|
else: |
|
null_mes += f":orange[**{collast}**]" |
|
|
|
if len(null_columns) != 0: |
|
with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True): |
|
st.markdown(null_mes) |
|
inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns)) |
|
run = st.button('Check', key= f"{tab_names_shown[i]}") |
|
else: |
|
st.success("No redundant Columns Found in Terms of Data Completeness") |
|
inf_filter= None |
|
run = False |
|
|
|
if inf_filter is not None: |
|
df.drop(columns=inf_filter, inplace=True) |
|
selected_df.drop(columns=inf_filter, inplace=True) |
|
|
|
if run or len(null_columns) == 0: |
|
main_list=df.columns.to_list() |
|
sub_list=['ID','LOADID','FILE_NAME'] |
|
if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)): |
|
df=df.drop(['ID','LOADID','FILE_NAME'],axis=1) |
|
conn.close() |
|
sin_metadata = SingleTableMetadata() |
|
sin_metadata.detect_from_dataframe(df) |
|
python_dict = sin_metadata.to_dict() |
|
if f'cont_{table_selector}' not in st.session_state: |
|
with st.spinner("Processing Table"): |
|
|
|
genai_mod = genai.GenerativeModel( |
|
model_name='models/gemini-pro' |
|
) |
|
if 'primary_key' in python_dict: |
|
primary_key = python_dict['primary_key'] |
|
else: |
|
primary_key = "Could Not be Identified" |
|
|
|
|
|
story = f""" Details of the table: |
|
table columns: {str(list(df.columns))} |
|
column datatypes: {str(df.dtypes.to_string())} |
|
table sample data: {selected_df.head(10).to_string()} |
|
""" |
|
response = genai_mod.generate_content(textwrap.dedent(""" |
|
You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only. |
|
Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN. |
|
|
|
Here is the table details: |
|
|
|
""") + story + f"The Primary Key is:{primary_key}" , |
|
safety_settings={ |
|
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, |
|
}) |
|
st.session_state[f'cont_{table_selector}'] = response.text |
|
|
|
st.markdown(st.session_state[f'cont_{table_selector}']) |
|
with cole2: |
|
st.markdown("**DATA PREVIEW**") |
|
st.dataframe(df, use_container_width= True) |
|
|
|
with tab2: |
|
metadata1 = MultiTableMetadata() |
|
metadata1.detect_from_dataframes( |
|
data= st.session_state.dataframes |
|
) |
|
multi_python_dict1 = metadata1.to_dict() |
|
rlist1=multi_python_dict1['relationships'] |
|
rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY']) |
|
for i in range(len(rlist1)): |
|
rlist=rlist1[i] |
|
nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i]) |
|
rdf=pd.concat([rdf,nrow],ignore_index=True) |
|
|
|
rdf['CARDINALITY'] = rdf.apply( |
|
lambda row: cardinality( |
|
st.session_state.dataframes[str(row['PARENT TABLE'])], |
|
st.session_state.dataframes[str(row['CHILD TABLE'])], |
|
str(row['PARENT TABLE RELATIONSHIP COLUMN']), |
|
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1) |
|
|
|
|
|
if 'rdf' not in st.session_state: |
|
st.session_state.rdf = rdf |
|
|
|
edited_map_df = st.data_editor( |
|
st.session_state.rdf, |
|
column_config={ |
|
"PARENT TABLE": st.column_config.SelectboxColumn( |
|
"Available Parent Table", |
|
width="medium", |
|
options=tab_names, |
|
required=True, |
|
), |
|
"CHILD TABLE": st.column_config.SelectboxColumn( |
|
"Available Child Table", |
|
width="medium", |
|
options=tab_names, |
|
required=True, |
|
), |
|
"PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn( |
|
"Available Parent Table Relationship Column", |
|
width="medium", |
|
options=col_names, |
|
required=True, |
|
), |
|
"CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn( |
|
"Available Child Table Relationship Column", |
|
width="medium", |
|
options=col_names, |
|
required=True, |
|
), |
|
"CARDINALITY": st.column_config.SelectboxColumn( |
|
"Cardinality", |
|
width="medium", |
|
options=['1:1','1:N','N:1','N:N'], |
|
required=True, |
|
) |
|
}, |
|
hide_index=True, |
|
num_rows = 'dynamic', |
|
use_container_width = True |
|
) |
|
|
|
for i,row in edited_map_df.iterrows(): |
|
pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns |
|
ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns |
|
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values) |
|
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values) |
|
match = [val for val in pvals if val in cvals] |
|
|
|
if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist: |
|
st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}") |
|
else: |
|
pass |
|
if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist: |
|
st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}") |
|
else: |
|
pass |
|
if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist): |
|
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values) |
|
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values) |
|
match = [val for val in pvals if val in cvals] |
|
if match == []: |
|
st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ") |
|
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []): |
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
add = st.button("Add Relationship", key='add') |
|
if add: |
|
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])): |
|
add_df = edited_map_df |
|
else: |
|
add_df = st.session_state.rdf |
|
else: |
|
add_df = st.session_state.rdf |
|
|
|
add_df['CARDINALITY'] = add_df.apply( |
|
lambda row: cardinality( |
|
st.session_state.dataframes[str(row['PARENT TABLE'])], |
|
st.session_state.dataframes[str(row['CHILD TABLE'])], |
|
str(row['PARENT TABLE RELATIONSHIP COLUMN']), |
|
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1) |
|
|
|
st.session_state.add_df = add_df |
|
edited_map_df = st.session_state.add_df |
|
|
|
rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values) |
|
unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs] |
|
st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""") |
|
|
|
G, table_columns = create_er_diagram(st.session_state.add_df) |
|
img_bytes= draw_er_diagram(G, table_columns) |
|
col21, col22= st.columns([1,8]) |
|
with col21: |
|
if st.button("Regenerate"): |
|
st.rerun() |
|
with col22: |
|
st.download_button( |
|
label="Download ER Diagram", |
|
data=img_bytes, |
|
file_name="er_diagram.png", |
|
mime="image/png" |
|
) |
|
|