|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import networkx as nx
|
|
import numpy as np
|
|
import streamlit as st
|
|
import sdv
|
|
from sdv.datasets.local import load_csvs
|
|
from sdv.metadata import MultiTableMetadata
|
|
from sdv.multi_table import HMASynthesizer
|
|
import time
|
|
import os
|
|
import gc
|
|
import warnings
|
|
from PIL import Image
|
|
from sdv.metadata import SingleTableMetadata
|
|
import pyodbc
|
|
import google.generativeai as genai
|
|
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
|
import textwrap
|
|
from streamlit_extras.stylable_container import stylable_container
|
|
from streamlit_extras.stateful_button import button
|
|
import json
|
|
from io import BytesIO
|
|
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
|
|
genai_mod = genai.GenerativeModel(
|
|
model_name='models/gemini-pro'
|
|
)
|
|
|
|
st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide')
|
|
st.markdown("""
|
|
<style>
|
|
|
|
/* Remove blank space at top and bottom */
|
|
.block-container {
|
|
padding-top: 2rem;
|
|
}
|
|
|
|
/* Remove blank space at the center canvas */
|
|
.st-emotion-cache-z5fcl4 {
|
|
position: relative;
|
|
top: -62px;
|
|
}
|
|
|
|
/* Make the toolbar transparent and the content below it clickable */
|
|
.st-emotion-cache-18ni7ap {
|
|
pointer-events: none;
|
|
background: rgb(255 255 255 / 0%)
|
|
}
|
|
.st-emotion-cache-zq5wmm {
|
|
pointer-events: auto;
|
|
background: rgb(255 255 255);
|
|
border-radius: 5px;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
def clear_cache():
|
|
if 'rdf' in st.session_state:
|
|
st.session_state.pop('rdf')
|
|
|
|
def create_er_diagram(df):
|
|
G = nx.DiGraph()
|
|
|
|
|
|
table_columns = {}
|
|
|
|
|
|
for _, row in df.iterrows():
|
|
parent_table = row['PARENT TABLE']
|
|
child_table = row['CHILD TABLE']
|
|
parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN']
|
|
child_fk = row['CHILD TABLE RELATIONSHIP COLUMN']
|
|
cardinality = row.get('CARDINALITY', '1:N')
|
|
|
|
|
|
if parent_table not in table_columns:
|
|
table_columns[parent_table] = []
|
|
table_columns[parent_table].append(parent_pk)
|
|
|
|
if child_table not in table_columns:
|
|
table_columns[child_table] = []
|
|
table_columns[child_table].append(child_fk)
|
|
|
|
|
|
G.add_node(parent_table)
|
|
G.add_node(child_table)
|
|
G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}')
|
|
|
|
return G, table_columns
|
|
|
|
def draw_er_diagram(G, table_columns):
|
|
pos = nx.spring_layout(G, k=1.5, iterations=50)
|
|
|
|
plt.figure(figsize=(8, 8))
|
|
nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True)
|
|
|
|
|
|
for node, (x, y) in pos.items():
|
|
plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center')
|
|
|
|
|
|
for node, columns in table_columns.items():
|
|
x, y = pos[node]
|
|
column_text = '\n'.join(columns)
|
|
plt.text(x, y, column_text, fontsize=6, ha='center', va='center')
|
|
|
|
|
|
edge_labels = nx.get_edge_attributes(G, 'label')
|
|
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6)
|
|
st.subheader("Schematic Representation")
|
|
with st.container(border=True, height= 350):
|
|
st.pyplot(plt)
|
|
img_bytes = BytesIO()
|
|
plt.savefig(img_bytes, format='png')
|
|
img_bytes.seek(0)
|
|
return img_bytes
|
|
|
|
def cardinality(parent_df, child_df, parent_column, child_column):
|
|
|
|
is_parent_unique = parent_df[parent_column].is_unique
|
|
|
|
|
|
is_child_unique = child_df[child_column].is_unique
|
|
|
|
|
|
if is_parent_unique and is_child_unique:
|
|
return '1:1'
|
|
elif is_parent_unique and not is_child_unique:
|
|
return '1:N'
|
|
elif not is_parent_unique and is_child_unique:
|
|
return 'N:1'
|
|
else:
|
|
return 'N:N'
|
|
|
|
|
|
st.subheader('SELECT SOURCE')
|
|
selectcol11, selectcol12 = st.columns(2)
|
|
with selectcol11:
|
|
select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache)
|
|
with selectcol12:
|
|
select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache)
|
|
if select1 =='DB_10001' and select2 is not None:
|
|
with st.spinner("Loading Tables:"):
|
|
conn1 = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
|
|
"Server=sql-ext-dev-uks-001.database.windows.net;"
|
|
"Database=sqldb-ext-dev-uks-001;"
|
|
"UID=dbadmin;"
|
|
"PWD=mYpa$$w0rD" )
|
|
|
|
query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC"
|
|
st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME'])
|
|
|
|
table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache)
|
|
sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache)
|
|
|
|
discover= button("Discover", key='discover')
|
|
|
|
if discover:
|
|
if sample_selector=='100':
|
|
count="top 100"
|
|
elif sample_selector=='10K':
|
|
count="top 10000"
|
|
elif sample_selector=='100K':
|
|
count="top 100000"
|
|
elif sample_selector=='1M':
|
|
count="top 1000000"
|
|
else:
|
|
count=""
|
|
|
|
query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+") ORDER BY TABLE_NAME ASC"
|
|
st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME'])
|
|
st.session_state.dataframes = {}
|
|
st.session_state.col_names = []
|
|
for tab in st.session_state.tab_names:
|
|
query2_2= "select "+count+" * from ["+select2+"].["+tab+"]"
|
|
st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1)
|
|
st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns)
|
|
|
|
|
|
tab_names = st.session_state.tab_names
|
|
dataframes = st.session_state.dataframes
|
|
col_names = st.session_state.col_names
|
|
metadata = MultiTableMetadata()
|
|
metadata.detect_from_dataframes(
|
|
data= st.session_state.dataframes
|
|
)
|
|
multi_python_dict = metadata.to_dict()
|
|
|
|
st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.")
|
|
|
|
tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"])
|
|
def view_callback():
|
|
st.session_state.tdet = False
|
|
with tab1:
|
|
|
|
st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME'])
|
|
containter_length = (len(st.session_state.table_list) + 1)*35
|
|
tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values)
|
|
tabs2= st.tabs(tab_names_shown)
|
|
for i, tab in enumerate(tabs2):
|
|
with tab:
|
|
with st.container(height= 400, border=True):
|
|
cole1,cole2=st.columns([1,1.5])
|
|
with cole1:
|
|
conn = pyodbc.connect("Driver={ODBC Driver 17 for SQL Server};"
|
|
"Server=sql-ext-dev-uks-001.database.windows.net;"
|
|
"Database=sqldb-ext-dev-uks-001;"
|
|
"UID=dbadmin;"
|
|
"PWD=mYpa$$w0rD" )
|
|
table_selector= tab_names_shown[i]
|
|
if table_selector is not None:
|
|
query2="select "+count+" * from [dbo].["+table_selector+"]"
|
|
|
|
df = st.session_state.dataframes[table_selector]
|
|
selected_df = pd.DataFrame()
|
|
for col in df.columns:
|
|
|
|
non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip()
|
|
|
|
|
|
selected_values = list(non_null_values[:10])
|
|
selected_values = selected_values + [""] * (10 - len(selected_values))
|
|
|
|
selected_df[col] = selected_values
|
|
|
|
null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1]
|
|
null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n"
|
|
for col in null_columns[:-1]:
|
|
null_mes += f":orange[**{col}**]" + ', '
|
|
for collast in null_columns[-1:]:
|
|
if len(null_columns)> 1:
|
|
null_mes += '**and** ' + f":orange[**{collast}**]"
|
|
else:
|
|
null_mes += f":orange[**{collast}**]"
|
|
|
|
if len(null_columns) != 0:
|
|
with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True):
|
|
st.markdown(null_mes)
|
|
inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns))
|
|
run = st.button('Check', key= f"{tab_names_shown[i]}")
|
|
else:
|
|
st.success("No redundant Columns Found in Terms of Data Completeness")
|
|
inf_filter= None
|
|
run = False
|
|
|
|
if inf_filter is not None:
|
|
df.drop(columns=inf_filter, inplace=True)
|
|
selected_df.drop(columns=inf_filter, inplace=True)
|
|
|
|
if run or len(null_columns) == 0:
|
|
main_list=df.columns.to_list()
|
|
sub_list=['ID','LOADID','FILE_NAME']
|
|
if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
|
|
df=df.drop(['ID','LOADID','FILE_NAME'],axis=1)
|
|
conn.close()
|
|
sin_metadata = SingleTableMetadata()
|
|
sin_metadata.detect_from_dataframe(df)
|
|
python_dict = sin_metadata.to_dict()
|
|
if f'cont_{table_selector}' not in st.session_state:
|
|
with st.spinner("Processing Table"):
|
|
|
|
genai_mod = genai.GenerativeModel(
|
|
model_name='models/gemini-pro'
|
|
)
|
|
if 'primary_key' in python_dict:
|
|
primary_key = python_dict['primary_key']
|
|
else:
|
|
primary_key = "Could Not be Identified"
|
|
|
|
|
|
story = f""" Details of the table:
|
|
table columns: {str(list(df.columns))}
|
|
column datatypes: {str(df.dtypes.to_string())}
|
|
table sample data: {selected_df.head(10).to_string()}
|
|
"""
|
|
response = genai_mod.generate_content(textwrap.dedent("""
|
|
You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only.
|
|
Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN.
|
|
|
|
Here is the table details:
|
|
|
|
""") + story + f"The Primary Key is:{primary_key}" ,
|
|
safety_settings={
|
|
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
|
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
|
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
|
})
|
|
st.session_state[f'cont_{table_selector}'] = response.text
|
|
|
|
st.markdown(st.session_state[f'cont_{table_selector}'])
|
|
with cole2:
|
|
st.markdown("**DATA PREVIEW**")
|
|
st.dataframe(df, use_container_width= True)
|
|
|
|
with tab2:
|
|
metadata1 = MultiTableMetadata()
|
|
metadata1.detect_from_dataframes(
|
|
data= st.session_state.dataframes
|
|
)
|
|
multi_python_dict1 = metadata1.to_dict()
|
|
rlist1=multi_python_dict1['relationships']
|
|
rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY'])
|
|
for i in range(len(rlist1)):
|
|
rlist=rlist1[i]
|
|
nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i])
|
|
rdf=pd.concat([rdf,nrow],ignore_index=True)
|
|
|
|
rdf['CARDINALITY'] = rdf.apply(
|
|
lambda row: cardinality(
|
|
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
|
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
|
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
|
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
|
|
|
|
|
if 'rdf' not in st.session_state:
|
|
st.session_state.rdf = rdf
|
|
|
|
edited_map_df = st.data_editor(
|
|
st.session_state.rdf,
|
|
column_config={
|
|
"PARENT TABLE": st.column_config.SelectboxColumn(
|
|
"Available Parent Table",
|
|
width="medium",
|
|
options=tab_names,
|
|
required=True,
|
|
),
|
|
"CHILD TABLE": st.column_config.SelectboxColumn(
|
|
"Available Child Table",
|
|
width="medium",
|
|
options=tab_names,
|
|
required=True,
|
|
),
|
|
"PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
|
"Available Parent Table Relationship Column",
|
|
width="medium",
|
|
options=col_names,
|
|
required=True,
|
|
),
|
|
"CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
|
"Available Child Table Relationship Column",
|
|
width="medium",
|
|
options=col_names,
|
|
required=True,
|
|
),
|
|
"CARDINALITY": st.column_config.SelectboxColumn(
|
|
"Cardinality",
|
|
width="medium",
|
|
options=['1:1','1:N','N:1','N:N'],
|
|
required=True,
|
|
)
|
|
},
|
|
hide_index=True,
|
|
num_rows = 'dynamic',
|
|
use_container_width = True
|
|
)
|
|
|
|
for i,row in edited_map_df.iterrows():
|
|
pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns
|
|
ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns
|
|
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
|
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
|
match = [val for val in pvals if val in cvals]
|
|
|
|
if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist:
|
|
st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}")
|
|
else:
|
|
pass
|
|
if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist:
|
|
st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}")
|
|
else:
|
|
pass
|
|
if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist):
|
|
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
|
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
|
match = [val for val in pvals if val in cvals]
|
|
if match == []:
|
|
st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ")
|
|
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []):
|
|
|
|
|
|
|
|
|
|
|
|
pass
|
|
|
|
add = st.button("Add Relationship", key='add')
|
|
if add:
|
|
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])):
|
|
add_df = edited_map_df
|
|
else:
|
|
add_df = st.session_state.rdf
|
|
else:
|
|
add_df = st.session_state.rdf
|
|
|
|
add_df['CARDINALITY'] = add_df.apply(
|
|
lambda row: cardinality(
|
|
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
|
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
|
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
|
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
|
|
|
st.session_state.add_df = add_df
|
|
edited_map_df = st.session_state.add_df
|
|
|
|
rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values)
|
|
unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs]
|
|
st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""")
|
|
|
|
G, table_columns = create_er_diagram(st.session_state.add_df)
|
|
img_bytes= draw_er_diagram(G, table_columns)
|
|
col21, col22= st.columns([1,8])
|
|
with col21:
|
|
if st.button("Regenerate"):
|
|
st.rerun()
|
|
with col22:
|
|
st.download_button(
|
|
label="Download ER Diagram",
|
|
data=img_bytes,
|
|
file_name="er_diagram.png",
|
|
mime="image/png"
|
|
)
|
|
|