Update pages/2DATA PROFILER.py
Browse files- pages/2DATA PROFILER.py +190 -188
pages/2DATA PROFILER.py
CHANGED
@@ -55,203 +55,205 @@ st.markdown("""
|
|
55 |
</style>
|
56 |
""", unsafe_allow_html=True)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
def load_dataframe_to_sqlserver(df, table_name, connection_string):
|
65 |
-
# Establish a connection to the database
|
66 |
-
conn = pyodbc.connect(connection_string)
|
67 |
-
cursor = conn.cursor()
|
68 |
-
|
69 |
-
# Drop table if it exists
|
70 |
-
drop_table_sql = f"IF OBJECT_ID('{table_name}', 'U') IS NOT NULL DROP TABLE {table_name}"
|
71 |
-
|
72 |
-
try:
|
73 |
-
cursor.execute(drop_table_sql)
|
74 |
-
conn.commit()
|
75 |
-
except Exception as e:
|
76 |
-
st.error(f"Error dropping table. Please try with a different name.")
|
77 |
-
|
78 |
-
# Create table SQL statement based on DataFrame columns and types
|
79 |
-
create_table_sql = f"CREATE TABLE {table_name} ("
|
80 |
-
for column in df.columns:
|
81 |
-
dtype = str(df[column].dtype)
|
82 |
-
sql_dtype = 'NVARCHAR(MAX)'
|
83 |
-
create_table_sql += f"{column} {sql_dtype}, "
|
84 |
-
create_table_sql = create_table_sql.rstrip(', ') + ')'
|
85 |
-
|
86 |
-
try:
|
87 |
-
# Execute table creation
|
88 |
-
cursor.execute(create_table_sql)
|
89 |
-
conn.commit()
|
90 |
-
except Exception as e:
|
91 |
-
st.error(f"Error Creating table. Please try with a different name.")
|
92 |
-
|
93 |
-
# Insert DataFrame data into the table using bulk insert
|
94 |
-
insert_sql = f"INSERT INTO {table_name} ({', '.join(df.columns)}) VALUES ({', '.join(['?' for _ in df.columns])})"
|
95 |
-
|
96 |
-
try:
|
97 |
-
# Using `fast_executemany` for bulk inserts
|
98 |
-
cursor.fast_executemany = True
|
99 |
-
cursor.executemany(insert_sql, df.values.tolist())
|
100 |
-
conn.commit()
|
101 |
-
st.success(f"Data Imported with table name: '{table_name}' successfully.")
|
102 |
-
except Exception as e:
|
103 |
-
st.error(f"Error Inserting Data. Please try with a different name.")
|
104 |
-
|
105 |
-
cursor.close()
|
106 |
-
conn.close()
|
107 |
-
|
108 |
-
|
109 |
-
def clear_cache():
|
110 |
-
keys = list(st.session_state.keys())
|
111 |
-
for key in keys:
|
112 |
-
st.session_state.pop(key)
|
113 |
-
|
114 |
-
def set_bg_hack(main_bg):
|
115 |
-
'''
|
116 |
-
A function to unpack an image from root folder and set as bg.
|
117 |
-
|
118 |
-
Returns
|
119 |
-
-------
|
120 |
-
The background.
|
121 |
-
'''
|
122 |
-
# set bg name
|
123 |
-
main_bg_ext = "png"
|
124 |
-
|
125 |
-
st.markdown(
|
126 |
-
f"""
|
127 |
-
<style>
|
128 |
-
.stApp {{
|
129 |
-
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
130 |
-
background-size: cover
|
131 |
-
}}
|
132 |
-
</style>
|
133 |
-
""",
|
134 |
-
unsafe_allow_html=True
|
135 |
-
)
|
136 |
-
#set_bg_hack("bg2.png")
|
137 |
-
header_style = """
|
138 |
-
<style>
|
139 |
-
.header {
|
140 |
-
color: black; /* Soft dark gray text color for readability */
|
141 |
-
width: 103%;
|
142 |
-
font-size: 60px; /* Large font size */
|
143 |
-
font-weight: bold; /* Bold text */
|
144 |
-
line-height: 1.2; /* Improved readability */
|
145 |
-
margin-bottom: 30px; /* Add some space below the header */
|
146 |
-
padding: 20px; /* Add padding for better spacing */
|
147 |
-
background-image:
|
148 |
-
linear-gradient(to right, rgba(255, 140, 0, 0.3) 25%, transparent 75%), /* Darker orange with higher opacity */
|
149 |
-
linear-gradient(to bottom, rgba(255, 140, 0, 0.3) 15%, transparent 75%),
|
150 |
-
linear-gradient(to left, rgba(255, 140, 0, 0.3) 25%, transparent 55%),
|
151 |
-
linear-gradient(to top, rgba(255, 140, 0, 0.3) 25%, transparent 95%);
|
152 |
-
background-blend-mode: overlay;
|
153 |
-
background-size: 250px 350px;
|
154 |
-
border-radius: 10px; /* Add border radius for rounded corners */
|
155 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Add shadow for depth */
|
156 |
-
}
|
157 |
-
</style>
|
158 |
-
"""
|
159 |
|
|
|
|
|
160 |
|
|
|
|
|
|
|
|
|
|
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
background-color: sky-blue; /* Background color for the header */
|
173 |
-
border-radius: 10px; /* Add border radius for rounded corners */
|
174 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Add shadow for depth */
|
175 |
-
}
|
176 |
-
</style>
|
177 |
-
"""
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
.small {
|
182 |
-
color: black;
|
183 |
-
font-size: 30px; /* Larger font size for content */
|
184 |
-
line-height: 1.6; /* Improved readability */
|
185 |
-
width: 100%;
|
186 |
-
padding: 10px; /* Add padding for better spacing */
|
187 |
-
margin-bottom: 10px;
|
188 |
-
background-color: white; /* Background color for the header */
|
189 |
-
border-radius: 10px; /* Add border radius for rounded corners */
|
190 |
-
}
|
191 |
-
</style>
|
192 |
-
"""
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
elif dtype == 'int64':
|
200 |
-
try:
|
201 |
-
df[column_name] = df[column_name].astype('int64')
|
202 |
-
except ValueError:
|
203 |
-
error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
|
204 |
-
st.error('Unable to convert some entries to integer. Please Clean the column.')
|
205 |
-
elif dtype == 'float64/numeric':
|
206 |
-
try:
|
207 |
-
df[column_name] = df[column_name].astype('float64')
|
208 |
-
except ValueError:
|
209 |
-
error_entries = df[pd.to_numeric(df[column_name], errors='coerce').isna()]
|
210 |
-
st.error('Unable to convert some entries to float. Please Clean the column.')
|
211 |
-
elif dtype == 'id':
|
212 |
-
try:
|
213 |
-
df[column_name] = df[column_name].astype('int64')
|
214 |
-
except ValueError:
|
215 |
-
error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
|
216 |
-
st.error('Unable to convert some entries to id. Please Clean the column.')
|
217 |
-
elif dtype == 'categorical/string':
|
218 |
-
df[column_name] = df[column_name].astype('category')
|
219 |
-
elif dtype == 'datetime':
|
220 |
-
try:
|
221 |
-
df[column_name] = pd.to_datetime(df[column_name], errors='raise', infer_datetime_format=True)
|
222 |
-
except ValueError:
|
223 |
-
error_entries = df[pd.to_datetime(df[column_name], errors='coerce', infer_datetime_format=True).isna()]
|
224 |
-
custom_format = st.text_input("Please provide the datetime format (e.g., %Y-%m-%d):")
|
225 |
-
if custom_format:
|
226 |
-
try:
|
227 |
-
df[column_name] = pd.to_datetime(df[column_name], errors='raise', format=custom_format)
|
228 |
-
except ValueError:
|
229 |
-
error_entries = df[pd.to_datetime(df[column_name], errors='coerce', format=custom_format).isna()]
|
230 |
-
st.error('Unable to parse datetime with the provided format. Please Clean the column.')
|
231 |
-
elif dtype == 'email':
|
232 |
-
df[column_name] = df[column_name].astype('category')
|
233 |
-
flag= 'email'
|
234 |
-
elif dtype == 'phone_number':
|
235 |
-
df[column_name] = df[column_name].astype('category')
|
236 |
-
flag= 'phone_number'
|
237 |
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
with st.container(border=True):
|
256 |
st.subheader('SELECT TABLE')
|
257 |
metadata = SingleTableMetadata()
|
|
|
55 |
</style>
|
56 |
""", unsafe_allow_html=True)
|
57 |
|
58 |
+
|
59 |
+
|
60 |
+
def load_dataframe_to_sqlserver(df, table_name, connection_string):
|
61 |
+
# Establish a connection to the database
|
62 |
+
conn = pyodbc.connect(connection_string)
|
63 |
+
cursor = conn.cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Drop table if it exists
|
66 |
+
drop_table_sql = f"IF OBJECT_ID('{table_name}', 'U') IS NOT NULL DROP TABLE {table_name}"
|
67 |
|
68 |
+
try:
|
69 |
+
cursor.execute(drop_table_sql)
|
70 |
+
conn.commit()
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Error dropping table. Please try with a different name.")
|
73 |
|
74 |
+
# Create table SQL statement based on DataFrame columns and types
|
75 |
+
create_table_sql = f"CREATE TABLE {table_name} ("
|
76 |
+
for column in df.columns:
|
77 |
+
dtype = str(df[column].dtype)
|
78 |
+
sql_dtype = 'NVARCHAR(MAX)'
|
79 |
+
create_table_sql += f"{column} {sql_dtype}, "
|
80 |
+
create_table_sql = create_table_sql.rstrip(', ') + ')'
|
81 |
|
82 |
+
try:
|
83 |
+
# Execute table creation
|
84 |
+
cursor.execute(create_table_sql)
|
85 |
+
conn.commit()
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error Creating table. Please try with a different name.")
|
88 |
+
|
89 |
+
# Insert DataFrame data into the table using bulk insert
|
90 |
+
insert_sql = f"INSERT INTO {table_name} ({', '.join(df.columns)}) VALUES ({', '.join(['?' for _ in df.columns])})"
|
91 |
|
92 |
+
try:
|
93 |
+
# Using `fast_executemany` for bulk inserts
|
94 |
+
cursor.fast_executemany = True
|
95 |
+
cursor.executemany(insert_sql, df.values.tolist())
|
96 |
+
conn.commit()
|
97 |
+
st.success(f"Data Imported with table name: '{table_name}' successfully.")
|
98 |
+
except Exception as e:
|
99 |
+
st.error(f"Error Inserting Data. Please try with a different name.")
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
cursor.close()
|
102 |
+
conn.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
|
105 |
+
def clear_cache():
|
106 |
+
keys = list(st.session_state.keys())
|
107 |
+
for key in keys:
|
108 |
+
st.session_state.pop(key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def set_bg_hack(main_bg):
|
111 |
+
'''
|
112 |
+
A function to unpack an image from root folder and set as bg.
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
The background.
|
117 |
+
'''
|
118 |
+
# set bg name
|
119 |
+
main_bg_ext = "png"
|
120 |
+
|
121 |
+
st.markdown(
|
122 |
+
f"""
|
123 |
+
<style>
|
124 |
+
.stApp {{
|
125 |
+
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
126 |
+
background-size: cover
|
127 |
+
}}
|
128 |
+
</style>
|
129 |
+
""",
|
130 |
+
unsafe_allow_html=True
|
131 |
+
)
|
132 |
+
#set_bg_hack("bg2.png")
|
133 |
+
header_style = """
|
134 |
+
<style>
|
135 |
+
.header {
|
136 |
+
color: black; /* Soft dark gray text color for readability */
|
137 |
+
width: 103%;
|
138 |
+
font-size: 60px; /* Large font size */
|
139 |
+
font-weight: bold; /* Bold text */
|
140 |
+
line-height: 1.2; /* Improved readability */
|
141 |
+
margin-bottom: 30px; /* Add some space below the header */
|
142 |
+
padding: 20px; /* Add padding for better spacing */
|
143 |
+
background-image:
|
144 |
+
linear-gradient(to right, rgba(255, 140, 0, 0.3) 25%, transparent 75%), /* Darker orange with higher opacity */
|
145 |
+
linear-gradient(to bottom, rgba(255, 140, 0, 0.3) 15%, transparent 75%),
|
146 |
+
linear-gradient(to left, rgba(255, 140, 0, 0.3) 25%, transparent 55%),
|
147 |
+
linear-gradient(to top, rgba(255, 140, 0, 0.3) 25%, transparent 95%);
|
148 |
+
background-blend-mode: overlay;
|
149 |
+
background-size: 250px 350px;
|
150 |
+
border-radius: 10px; /* Add border radius for rounded corners */
|
151 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Add shadow for depth */
|
152 |
+
}
|
153 |
+
</style>
|
154 |
+
"""
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
content_style = """
|
161 |
+
<style>
|
162 |
+
.content {
|
163 |
+
font-size: 40px; /* Larger font size for content */
|
164 |
+
line-height: 1.6; /* Improved readability */
|
165 |
+
width: 103%;
|
166 |
+
padding: 10px; /* Add padding for better spacing */
|
167 |
+
margin-bottom: 20px;
|
168 |
+
background-color: sky-blue; /* Background color for the header */
|
169 |
+
border-radius: 10px; /* Add border radius for rounded corners */
|
170 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); /* Add shadow for depth */
|
171 |
+
}
|
172 |
+
</style>
|
173 |
+
"""
|
174 |
+
|
175 |
+
small_style = """
|
176 |
+
<style>
|
177 |
+
.small {
|
178 |
+
color: black;
|
179 |
+
font-size: 30px; /* Larger font size for content */
|
180 |
+
line-height: 1.6; /* Improved readability */
|
181 |
+
width: 100%;
|
182 |
+
padding: 10px; /* Add padding for better spacing */
|
183 |
+
margin-bottom: 10px;
|
184 |
+
background-color: white; /* Background color for the header */
|
185 |
+
border-radius: 10px; /* Add border radius for rounded corners */
|
186 |
+
}
|
187 |
+
</style>
|
188 |
+
"""
|
189 |
+
|
190 |
+
def update_column_dtype(df, column_name, dtype):
|
191 |
+
error_entries = pd.DataFrame()
|
192 |
+
flag = None
|
193 |
+
if dtype == 'System Detected':
|
194 |
+
pass
|
195 |
+
elif dtype == 'int64':
|
196 |
+
try:
|
197 |
+
df[column_name] = df[column_name].astype('int64')
|
198 |
+
except ValueError:
|
199 |
+
error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
|
200 |
+
st.error('Unable to convert some entries to integer. Please Clean the column.')
|
201 |
+
elif dtype == 'float64/numeric':
|
202 |
+
try:
|
203 |
+
df[column_name] = df[column_name].astype('float64')
|
204 |
+
except ValueError:
|
205 |
+
error_entries = df[pd.to_numeric(df[column_name], errors='coerce').isna()]
|
206 |
+
st.error('Unable to convert some entries to float. Please Clean the column.')
|
207 |
+
elif dtype == 'id':
|
208 |
+
try:
|
209 |
+
df[column_name] = df[column_name].astype('int64')
|
210 |
+
except ValueError:
|
211 |
+
error_entries = df[~df[column_name].apply(lambda x: str(x).isdigit())]
|
212 |
+
st.error('Unable to convert some entries to id. Please Clean the column.')
|
213 |
+
elif dtype == 'categorical/string':
|
214 |
+
df[column_name] = df[column_name].astype('category')
|
215 |
+
elif dtype == 'datetime':
|
216 |
+
try:
|
217 |
+
df[column_name] = pd.to_datetime(df[column_name], errors='raise', infer_datetime_format=True)
|
218 |
+
except ValueError:
|
219 |
+
error_entries = df[pd.to_datetime(df[column_name], errors='coerce', infer_datetime_format=True).isna()]
|
220 |
+
custom_format = st.text_input("Please provide the datetime format (e.g., %Y-%m-%d):")
|
221 |
+
if custom_format:
|
222 |
+
try:
|
223 |
+
df[column_name] = pd.to_datetime(df[column_name], errors='raise', format=custom_format)
|
224 |
+
except ValueError:
|
225 |
+
error_entries = df[pd.to_datetime(df[column_name], errors='coerce', format=custom_format).isna()]
|
226 |
+
st.error('Unable to parse datetime with the provided format. Please Clean the column.')
|
227 |
+
elif dtype == 'email':
|
228 |
+
df[column_name] = df[column_name].astype('category')
|
229 |
+
flag= 'email'
|
230 |
+
elif dtype == 'phone_number':
|
231 |
+
df[column_name] = df[column_name].astype('category')
|
232 |
+
flag= 'phone_number'
|
233 |
|
234 |
+
return df, error_entries, flag
|
235 |
+
|
236 |
+
def convert_to_special_representation(value):
|
237 |
+
value = str(value)
|
238 |
+
special_chars = set("!@#$%^&*()_+-=[]{}|;:,.<>?`~")
|
239 |
+
result = ''
|
240 |
+
for char in value:
|
241 |
+
if char.isdigit():
|
242 |
+
result += 'N'
|
243 |
+
elif char.isalpha():
|
244 |
+
result += 'A'
|
245 |
+
elif char in special_chars:
|
246 |
+
result += char
|
247 |
+
else:
|
248 |
+
# Handle other characters as needed
|
249 |
+
result += char
|
250 |
+
return result
|
251 |
+
|
252 |
+
######
|
253 |
+
def main():
|
254 |
+
# st.title('PAGE TITLE') # Change this for each page
|
255 |
+
sidebar()
|
256 |
+
########
|
257 |
with st.container(border=True):
|
258 |
st.subheader('SELECT TABLE')
|
259 |
metadata = SingleTableMetadata()
|