Create DATA CATALOG
Browse files- pages/DATA CATALOG +425 -0
pages/DATA CATALOG
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import networkx as nx
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
import sdv
|
7 |
+
from sdv.datasets.local import load_csvs
|
8 |
+
from sdv.metadata import MultiTableMetadata
|
9 |
+
from sdv.multi_table import HMASynthesizer
|
10 |
+
import time
|
11 |
+
import os
|
12 |
+
import gc
|
13 |
+
import warnings
|
14 |
+
from PIL import Image
|
15 |
+
from sdv.metadata import SingleTableMetadata
|
16 |
+
import pyodbc
|
17 |
+
import google.generativeai as genai
|
18 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
19 |
+
import textwrap
|
20 |
+
from streamlit_extras.stylable_container import stylable_container
|
21 |
+
from streamlit_extras.stateful_button import button
|
22 |
+
import json
|
23 |
+
from io import BytesIO
|
24 |
+
import pymssql
|
25 |
+
|
26 |
+
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
|
27 |
+
genai_mod = genai.GenerativeModel(
|
28 |
+
model_name='models/gemini-pro'
|
29 |
+
)
|
30 |
+
|
31 |
+
st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide')
|
32 |
+
st.markdown("""
|
33 |
+
<style>
|
34 |
+
|
35 |
+
/* Remove blank space at top and bottom */
|
36 |
+
.block-container {
|
37 |
+
padding-top: 2rem;
|
38 |
+
}
|
39 |
+
|
40 |
+
/* Remove blank space at the center canvas */
|
41 |
+
.st-emotion-cache-z5fcl4 {
|
42 |
+
position: relative;
|
43 |
+
top: -62px;
|
44 |
+
}
|
45 |
+
|
46 |
+
/* Make the toolbar transparent and the content below it clickable */
|
47 |
+
.st-emotion-cache-18ni7ap {
|
48 |
+
pointer-events: none;
|
49 |
+
background: rgb(255 255 255 / 0%)
|
50 |
+
}
|
51 |
+
.st-emotion-cache-zq5wmm {
|
52 |
+
pointer-events: auto;
|
53 |
+
background: rgb(255 255 255);
|
54 |
+
border-radius: 5px;
|
55 |
+
}
|
56 |
+
</style>
|
57 |
+
""", unsafe_allow_html=True)
|
58 |
+
def clear_cache():
|
59 |
+
if 'rdf' in st.session_state:
|
60 |
+
st.session_state.pop('rdf')
|
61 |
+
|
62 |
+
def create_er_diagram(df):
|
63 |
+
G = nx.DiGraph() # Directed graph
|
64 |
+
|
65 |
+
# Dictionary to hold table columns
|
66 |
+
table_columns = {}
|
67 |
+
|
68 |
+
# Add nodes and edges to the graph
|
69 |
+
for _, row in df.iterrows():
|
70 |
+
parent_table = row['PARENT TABLE']
|
71 |
+
child_table = row['CHILD TABLE']
|
72 |
+
parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN']
|
73 |
+
child_fk = row['CHILD TABLE RELATIONSHIP COLUMN']
|
74 |
+
cardinality = row.get('CARDINALITY', '1:N')
|
75 |
+
|
76 |
+
# Add columns to tables
|
77 |
+
if parent_table not in table_columns:
|
78 |
+
table_columns[parent_table] = []
|
79 |
+
table_columns[parent_table].append(parent_pk)
|
80 |
+
|
81 |
+
if child_table not in table_columns:
|
82 |
+
table_columns[child_table] = []
|
83 |
+
table_columns[child_table].append(child_fk)
|
84 |
+
|
85 |
+
# Add nodes and edges
|
86 |
+
G.add_node(parent_table)
|
87 |
+
G.add_node(child_table)
|
88 |
+
G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}')
|
89 |
+
|
90 |
+
return G, table_columns
|
91 |
+
|
92 |
+
def draw_er_diagram(G, table_columns):
|
93 |
+
pos = nx.spring_layout(G, k=1.5, iterations=50) # Use a layout that spreads out nodes
|
94 |
+
|
95 |
+
plt.figure(figsize=(8, 8))
|
96 |
+
nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True)
|
97 |
+
|
98 |
+
# Draw node labels (table names in bold)
|
99 |
+
for node, (x, y) in pos.items():
|
100 |
+
plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center')
|
101 |
+
|
102 |
+
# Draw column names
|
103 |
+
for node, columns in table_columns.items():
|
104 |
+
x, y = pos[node]
|
105 |
+
column_text = '\n'.join(columns)
|
106 |
+
plt.text(x, y, column_text, fontsize=6, ha='center', va='center')
|
107 |
+
|
108 |
+
# Draw edge labels
|
109 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
110 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6)
|
111 |
+
st.subheader("Schematic Representation")
|
112 |
+
with st.container(border=True, height= 350):
|
113 |
+
st.pyplot(plt)
|
114 |
+
img_bytes = BytesIO()
|
115 |
+
plt.savefig(img_bytes, format='png')
|
116 |
+
img_bytes.seek(0)
|
117 |
+
return img_bytes
|
118 |
+
|
119 |
+
def cardinality(parent_df, child_df, parent_column, child_column):
|
120 |
+
# Check uniqueness of parent primary key
|
121 |
+
is_parent_unique = parent_df[parent_column].is_unique
|
122 |
+
|
123 |
+
# Check uniqueness of child foreign key
|
124 |
+
is_child_unique = child_df[child_column].is_unique
|
125 |
+
|
126 |
+
# Determine cardinality
|
127 |
+
if is_parent_unique and is_child_unique:
|
128 |
+
return '1:1'
|
129 |
+
elif is_parent_unique and not is_child_unique:
|
130 |
+
return '1:N'
|
131 |
+
elif not is_parent_unique and is_child_unique:
|
132 |
+
return 'N:1'
|
133 |
+
else:
|
134 |
+
return 'N:N'
|
135 |
+
|
136 |
+
#st.title('AUTOMATED DATA CATALOGUE')
|
137 |
+
st.subheader('SELECT SOURCE')
|
138 |
+
selectcol11, selectcol12 = st.columns(2)
|
139 |
+
with selectcol11:
|
140 |
+
select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache)
|
141 |
+
with selectcol12:
|
142 |
+
select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache)
|
143 |
+
if select1 =='DB_10001' and select2 is not None:
|
144 |
+
with st.spinner("Loading Tables:"):
|
145 |
+
|
146 |
+
conn1 = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;"
|
147 |
+
"Database=sqldb-ext-dev-uks-001;"
|
148 |
+
"UID=dbadmin;"
|
149 |
+
"PWD=mYpa$$w0rD" )
|
150 |
+
|
151 |
+
query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC"
|
152 |
+
st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME'])
|
153 |
+
|
154 |
+
table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache)
|
155 |
+
sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache)
|
156 |
+
|
157 |
+
discover= button("Discover", key='discover')
|
158 |
+
|
159 |
+
if discover:
|
160 |
+
if sample_selector=='100':
|
161 |
+
count="top 100"
|
162 |
+
elif sample_selector=='10K':
|
163 |
+
count="top 10000"
|
164 |
+
elif sample_selector=='100K':
|
165 |
+
count="top 100000"
|
166 |
+
elif sample_selector=='1M':
|
167 |
+
count="top 1000000"
|
168 |
+
else:
|
169 |
+
count=""
|
170 |
+
|
171 |
+
query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+") ORDER BY TABLE_NAME ASC"
|
172 |
+
st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME'])
|
173 |
+
st.session_state.dataframes = {}
|
174 |
+
st.session_state.col_names = []
|
175 |
+
for tab in st.session_state.tab_names:
|
176 |
+
query2_2= "select "+count+" * from ["+select2+"].["+tab+"]"
|
177 |
+
st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1)
|
178 |
+
st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns)
|
179 |
+
#st.session_state.data_load = "Yes"
|
180 |
+
|
181 |
+
tab_names = st.session_state.tab_names
|
182 |
+
dataframes = st.session_state.dataframes
|
183 |
+
col_names = st.session_state.col_names
|
184 |
+
metadata = MultiTableMetadata()
|
185 |
+
metadata.detect_from_dataframes(
|
186 |
+
data= st.session_state.dataframes
|
187 |
+
)
|
188 |
+
multi_python_dict = metadata.to_dict()
|
189 |
+
|
190 |
+
st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.")
|
191 |
+
#st.subheader("DATA CATALOGUE")
|
192 |
+
tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"])
|
193 |
+
def view_callback():
|
194 |
+
st.session_state.tdet = False
|
195 |
+
with tab1:
|
196 |
+
#st.write(python_dict)
|
197 |
+
st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME'])
|
198 |
+
containter_length = (len(st.session_state.table_list) + 1)*35
|
199 |
+
tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values)
|
200 |
+
tabs2= st.tabs(tab_names_shown)
|
201 |
+
for i, tab in enumerate(tabs2):
|
202 |
+
with tab:
|
203 |
+
with st.container(height= 400, border=True):
|
204 |
+
cole1,cole2=st.columns([1,1.5])
|
205 |
+
with cole1:
|
206 |
+
conn = pymssql.connect("Driver={ODBC Driver 17 for SQL Server};"
|
207 |
+
"Server=sql-ext-dev-uks-001.database.windows.net;"
|
208 |
+
"Database=sqldb-ext-dev-uks-001;"
|
209 |
+
"UID=dbadmin;"
|
210 |
+
"PWD=mYpa$$w0rD" )
|
211 |
+
|
212 |
+
table_selector= tab_names_shown[i]
|
213 |
+
if table_selector is not None:
|
214 |
+
query2="select "+count+" * from [dbo].["+table_selector+"]"
|
215 |
+
#df = pd.read_sql_query(query2,con=conn)
|
216 |
+
df = st.session_state.dataframes[table_selector]
|
217 |
+
selected_df = pd.DataFrame()
|
218 |
+
for col in df.columns:
|
219 |
+
# Filter non-null and non-blank values
|
220 |
+
non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip()
|
221 |
+
|
222 |
+
# Select up to 10 values (or fewer if less than 10 non-null values)
|
223 |
+
selected_values = list(non_null_values[:10])
|
224 |
+
selected_values = selected_values + [""] * (10 - len(selected_values))
|
225 |
+
# Add selected values to the new dataframe
|
226 |
+
selected_df[col] = selected_values
|
227 |
+
#st.dataframe(selected_df)
|
228 |
+
null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1]
|
229 |
+
null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n"
|
230 |
+
for col in null_columns[:-1]:
|
231 |
+
null_mes += f":orange[**{col}**]" + ', '
|
232 |
+
for collast in null_columns[-1:]:
|
233 |
+
if len(null_columns)> 1:
|
234 |
+
null_mes += '**and** ' + f":orange[**{collast}**]"
|
235 |
+
else:
|
236 |
+
null_mes += f":orange[**{collast}**]"
|
237 |
+
|
238 |
+
if len(null_columns) != 0:
|
239 |
+
with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True):
|
240 |
+
st.markdown(null_mes)
|
241 |
+
inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns))
|
242 |
+
run = st.button('Check', key= f"{tab_names_shown[i]}")
|
243 |
+
else:
|
244 |
+
st.success("No redundant Columns Found in Terms of Data Completeness")
|
245 |
+
inf_filter= None
|
246 |
+
run = False
|
247 |
+
|
248 |
+
if inf_filter is not None:
|
249 |
+
df.drop(columns=inf_filter, inplace=True)
|
250 |
+
selected_df.drop(columns=inf_filter, inplace=True)
|
251 |
+
|
252 |
+
if run or len(null_columns) == 0:
|
253 |
+
main_list=df.columns.to_list()
|
254 |
+
sub_list=['ID','LOADID','FILE_NAME']
|
255 |
+
if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
|
256 |
+
df=df.drop(['ID','LOADID','FILE_NAME'],axis=1)
|
257 |
+
conn.close()
|
258 |
+
sin_metadata = SingleTableMetadata()
|
259 |
+
sin_metadata.detect_from_dataframe(df)
|
260 |
+
python_dict = sin_metadata.to_dict()
|
261 |
+
if f'cont_{table_selector}' not in st.session_state:
|
262 |
+
with st.spinner("Processing Table"):
|
263 |
+
# Create a GenerativeModel instance
|
264 |
+
genai_mod = genai.GenerativeModel(
|
265 |
+
model_name='models/gemini-pro'
|
266 |
+
)
|
267 |
+
if 'primary_key' in python_dict:
|
268 |
+
primary_key = python_dict['primary_key']
|
269 |
+
else:
|
270 |
+
primary_key = "Could Not be Identified"
|
271 |
+
|
272 |
+
|
273 |
+
story = f""" Details of the table:
|
274 |
+
table columns: {str(list(df.columns))}
|
275 |
+
column datatypes: {str(df.dtypes.to_string())}
|
276 |
+
table sample data: {selected_df.head(10).to_string()}
|
277 |
+
"""
|
278 |
+
response = genai_mod.generate_content(textwrap.dedent("""
|
279 |
+
You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only.
|
280 |
+
Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN.
|
281 |
+
|
282 |
+
Here is the table details:
|
283 |
+
|
284 |
+
""") + story + f"The Primary Key is:{primary_key}" ,
|
285 |
+
safety_settings={
|
286 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
287 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
288 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
289 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
290 |
+
})
|
291 |
+
st.session_state[f'cont_{table_selector}'] = response.text
|
292 |
+
|
293 |
+
st.markdown(st.session_state[f'cont_{table_selector}'])
|
294 |
+
with cole2:
|
295 |
+
st.markdown("**DATA PREVIEW**")
|
296 |
+
st.dataframe(df, use_container_width= True)
|
297 |
+
|
298 |
+
with tab2:
|
299 |
+
metadata1 = MultiTableMetadata()
|
300 |
+
metadata1.detect_from_dataframes(
|
301 |
+
data= st.session_state.dataframes
|
302 |
+
)
|
303 |
+
multi_python_dict1 = metadata1.to_dict()
|
304 |
+
rlist1=multi_python_dict1['relationships']
|
305 |
+
rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY'])
|
306 |
+
for i in range(len(rlist1)):
|
307 |
+
rlist=rlist1[i]
|
308 |
+
nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i])
|
309 |
+
rdf=pd.concat([rdf,nrow],ignore_index=True)
|
310 |
+
|
311 |
+
rdf['CARDINALITY'] = rdf.apply(
|
312 |
+
lambda row: cardinality(
|
313 |
+
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
314 |
+
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
315 |
+
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
316 |
+
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
317 |
+
|
318 |
+
|
319 |
+
if 'rdf' not in st.session_state:
|
320 |
+
st.session_state.rdf = rdf
|
321 |
+
|
322 |
+
edited_map_df = st.data_editor(
|
323 |
+
st.session_state.rdf,
|
324 |
+
column_config={
|
325 |
+
"PARENT TABLE": st.column_config.SelectboxColumn(
|
326 |
+
"Available Parent Table",
|
327 |
+
width="medium",
|
328 |
+
options=tab_names,
|
329 |
+
required=True,
|
330 |
+
),
|
331 |
+
"CHILD TABLE": st.column_config.SelectboxColumn(
|
332 |
+
"Available Child Table",
|
333 |
+
width="medium",
|
334 |
+
options=tab_names,
|
335 |
+
required=True,
|
336 |
+
),
|
337 |
+
"PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
338 |
+
"Available Parent Table Relationship Column",
|
339 |
+
width="medium",
|
340 |
+
options=col_names,
|
341 |
+
required=True,
|
342 |
+
),
|
343 |
+
"CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
344 |
+
"Available Child Table Relationship Column",
|
345 |
+
width="medium",
|
346 |
+
options=col_names,
|
347 |
+
required=True,
|
348 |
+
),
|
349 |
+
"CARDINALITY": st.column_config.SelectboxColumn(
|
350 |
+
"Cardinality",
|
351 |
+
width="medium",
|
352 |
+
options=['1:1','1:N','N:1','N:N'],
|
353 |
+
required=True,
|
354 |
+
)
|
355 |
+
},
|
356 |
+
hide_index=True,
|
357 |
+
num_rows = 'dynamic',
|
358 |
+
use_container_width = True
|
359 |
+
)
|
360 |
+
|
361 |
+
for i,row in edited_map_df.iterrows():
|
362 |
+
pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns
|
363 |
+
ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns
|
364 |
+
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
365 |
+
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
366 |
+
match = [val for val in pvals if val in cvals]
|
367 |
+
#st.write(match)
|
368 |
+
if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist:
|
369 |
+
st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}")
|
370 |
+
else:
|
371 |
+
pass
|
372 |
+
if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist:
|
373 |
+
st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}")
|
374 |
+
else:
|
375 |
+
pass
|
376 |
+
if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist):
|
377 |
+
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
378 |
+
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
379 |
+
match = [val for val in pvals if val in cvals]
|
380 |
+
if match == []:
|
381 |
+
st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ")
|
382 |
+
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []):
|
383 |
+
# primary_check = len(list(dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)) == dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].nunique()
|
384 |
+
# if primary_check:
|
385 |
+
# pass
|
386 |
+
# else:
|
387 |
+
# st.error(f"The Column {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} has duplicate records and hence can not be considered as Primary Key.")
|
388 |
+
pass
|
389 |
+
|
390 |
+
add = st.button("Add Relationship", key='add')
|
391 |
+
if add:
|
392 |
+
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])):
|
393 |
+
add_df = edited_map_df
|
394 |
+
else:
|
395 |
+
add_df = st.session_state.rdf
|
396 |
+
else:
|
397 |
+
add_df = st.session_state.rdf
|
398 |
+
|
399 |
+
add_df['CARDINALITY'] = add_df.apply(
|
400 |
+
lambda row: cardinality(
|
401 |
+
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
402 |
+
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
403 |
+
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
404 |
+
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
405 |
+
|
406 |
+
st.session_state.add_df = add_df
|
407 |
+
edited_map_df = st.session_state.add_df
|
408 |
+
|
409 |
+
rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values)
|
410 |
+
unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs]
|
411 |
+
st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""")
|
412 |
+
|
413 |
+
G, table_columns = create_er_diagram(st.session_state.add_df)
|
414 |
+
img_bytes= draw_er_diagram(G, table_columns)
|
415 |
+
col21, col22= st.columns([1,8])
|
416 |
+
with col21:
|
417 |
+
if st.button("Regenerate"):
|
418 |
+
st.rerun()
|
419 |
+
with col22:
|
420 |
+
st.download_button(
|
421 |
+
label="Download ER Diagram",
|
422 |
+
data=img_bytes,
|
423 |
+
file_name="er_diagram.png",
|
424 |
+
mime="image/png"
|
425 |
+
)
|