import pandas as pd import matplotlib.pyplot as plt import networkx as nx import numpy as np import streamlit as st import sdv from sdv.datasets.local import load_csvs from sdv.metadata import MultiTableMetadata from sdv.multi_table import HMASynthesizer import time import os import gc import warnings from PIL import Image from sdv.metadata import SingleTableMetadata import pyodbc import google.generativeai as genai from google.generativeai.types import HarmCategory, HarmBlockThreshold import textwrap from streamlit_extras.stylable_container import stylable_container from streamlit_extras.stateful_button import button import json from io import BytesIO import pymssql ############ from streamlit_app import sidebar genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w') genai_mod = genai.GenerativeModel( model_name='models/gemini-pro' ) st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide') st.markdown(""" """, unsafe_allow_html=True) ###### def main(): # st.title('PAGE TITLE') # Change this for each page sidebar() ######## def clear_cache(): if 'rdf' in st.session_state: st.session_state.pop('rdf') def create_er_diagram(df): G = nx.DiGraph() # Directed graph # Dictionary to hold table columns table_columns = {} # Add nodes and edges to the graph for _, row in df.iterrows(): parent_table = row['PARENT TABLE'] child_table = row['CHILD TABLE'] parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN'] child_fk = row['CHILD TABLE RELATIONSHIP COLUMN'] cardinality = row.get('CARDINALITY', '1:N') # Add columns to tables if parent_table not in table_columns: table_columns[parent_table] = [] table_columns[parent_table].append(parent_pk) if child_table not in table_columns: table_columns[child_table] = [] table_columns[child_table].append(child_fk) # Add nodes and edges G.add_node(parent_table) G.add_node(child_table) G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}') return G, table_columns def draw_er_diagram(G, table_columns): pos = nx.spring_layout(G, k=1.5, iterations=50) # Use a layout that spreads out nodes plt.figure(figsize=(8, 8)) nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True) # Draw node labels (table names in bold) for node, (x, y) in pos.items(): plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center') # Draw column names for node, columns in table_columns.items(): x, y = pos[node] column_text = '\n'.join(columns) plt.text(x, y, column_text, fontsize=6, ha='center', va='center') # Draw edge labels edge_labels = nx.get_edge_attributes(G, 'label') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6) st.subheader("Schematic Representation") with st.container(border=True, height= 350): st.pyplot(plt) img_bytes = BytesIO() plt.savefig(img_bytes, format='png') img_bytes.seek(0) return img_bytes def cardinality(parent_df, child_df, parent_column, child_column): # Check uniqueness of parent primary key is_parent_unique = parent_df[parent_column].is_unique # Check uniqueness of child foreign key is_child_unique = child_df[child_column].is_unique # Determine cardinality if is_parent_unique and is_child_unique: return '1:1' elif is_parent_unique and not is_child_unique: return '1:N' elif not is_parent_unique and is_child_unique: return 'N:1' else: return 'N:N' #st.title('AUTOMATED DATA CATALOGUE') st.subheader('SELECT SOURCE') selectcol11, selectcol12 = st.columns(2) with selectcol11: select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache) with selectcol12: select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache) if select1 =='DB_10001' and select2 is not None: with st.spinner("Loading Tables:"): conn1 = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;" "Database=sqldb-ext-dev-uks-001;" "UID=dbadmin;" "PWD=mYpa$$w0rD" ) query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC" st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME']) table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache) sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache) discover= button("Discover", key='discover') if discover: if sample_selector=='100': count="top 100" elif sample_selector=='10K': count="top 10000" elif sample_selector=='100K': count="top 100000" elif sample_selector=='1M': count="top 1000000" else: count="" query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+") ORDER BY TABLE_NAME ASC" st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME']) st.session_state.dataframes = {} st.session_state.col_names = [] for tab in st.session_state.tab_names: query2_2= "select "+count+" * from ["+select2+"].["+tab+"]" st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1) st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns) #st.session_state.data_load = "Yes" tab_names = st.session_state.tab_names dataframes = st.session_state.dataframes col_names = st.session_state.col_names metadata = MultiTableMetadata() metadata.detect_from_dataframes( data= st.session_state.dataframes ) multi_python_dict = metadata.to_dict() st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.") #st.subheader("DATA CATALOGUE") tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"]) def view_callback(): st.session_state.tdet = False with tab1: #st.write(python_dict) st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME']) containter_length = (len(st.session_state.table_list) + 1)*35 tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values) tabs2= st.tabs(tab_names_shown) for i, tab in enumerate(tabs2): with tab: with st.container(height= 400, border=True): cole1,cole2=st.columns([1,1.5]) with cole1: conn = pymssql.connect("Driver={ODBC Driver 17 for SQL Server};" "Server=sql-ext-dev-uks-001.database.windows.net;" "Database=sqldb-ext-dev-uks-001;" "UID=dbadmin;" "PWD=mYpa$$w0rD" ) table_selector= tab_names_shown[i] if table_selector is not None: query2="select "+count+" * from [dbo].["+table_selector+"]" #df = pd.read_sql_query(query2,con=conn) df = st.session_state.dataframes[table_selector] selected_df = pd.DataFrame() for col in df.columns: # Filter non-null and non-blank values non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip() # Select up to 10 values (or fewer if less than 10 non-null values) selected_values = list(non_null_values[:10]) selected_values = selected_values + [""] * (10 - len(selected_values)) # Add selected values to the new dataframe selected_df[col] = selected_values #st.dataframe(selected_df) null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1] null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n" for col in null_columns[:-1]: null_mes += f":orange[**{col}**]" + ', ' for collast in null_columns[-1:]: if len(null_columns)> 1: null_mes += '**and** ' + f":orange[**{collast}**]" else: null_mes += f":orange[**{collast}**]" if len(null_columns) != 0: with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True): st.markdown(null_mes) inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns)) run = st.button('Check', key= f"{tab_names_shown[i]}") else: st.success("No redundant Columns Found in Terms of Data Completeness") inf_filter= None run = False if inf_filter is not None: df.drop(columns=inf_filter, inplace=True) selected_df.drop(columns=inf_filter, inplace=True) if run or len(null_columns) == 0: main_list=df.columns.to_list() sub_list=['ID','LOADID','FILE_NAME'] if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)): df=df.drop(['ID','LOADID','FILE_NAME'],axis=1) conn.close() sin_metadata = SingleTableMetadata() sin_metadata.detect_from_dataframe(df) python_dict = sin_metadata.to_dict() if f'cont_{table_selector}' not in st.session_state: with st.spinner("Processing Table"): # Create a GenerativeModel instance genai_mod = genai.GenerativeModel( model_name='models/gemini-pro' ) if 'primary_key' in python_dict: primary_key = python_dict['primary_key'] else: primary_key = "Could Not be Identified" story = f""" Details of the table: table columns: {str(list(df.columns))} column datatypes: {str(df.dtypes.to_string())} table sample data: {selected_df.head(10).to_string()} """ response = genai_mod.generate_content(textwrap.dedent(""" You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only. Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN. Here is the table details: """) + story + f"The Primary Key is:{primary_key}" , safety_settings={ HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, }) st.session_state[f'cont_{table_selector}'] = response.text st.markdown(st.session_state[f'cont_{table_selector}']) with cole2: st.markdown("**DATA PREVIEW**") st.dataframe(df, use_container_width= True) with tab2: metadata1 = MultiTableMetadata() metadata1.detect_from_dataframes( data= st.session_state.dataframes ) multi_python_dict1 = metadata1.to_dict() rlist1=multi_python_dict1['relationships'] rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY']) for i in range(len(rlist1)): rlist=rlist1[i] nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i]) rdf=pd.concat([rdf,nrow],ignore_index=True) rdf['CARDINALITY'] = rdf.apply( lambda row: cardinality( st.session_state.dataframes[str(row['PARENT TABLE'])], st.session_state.dataframes[str(row['CHILD TABLE'])], str(row['PARENT TABLE RELATIONSHIP COLUMN']), str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1) if 'rdf' not in st.session_state: st.session_state.rdf = rdf edited_map_df = st.data_editor( st.session_state.rdf, column_config={ "PARENT TABLE": st.column_config.SelectboxColumn( "Available Parent Table", width="medium", options=tab_names, required=True, ), "CHILD TABLE": st.column_config.SelectboxColumn( "Available Child Table", width="medium", options=tab_names, required=True, ), "PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn( "Available Parent Table Relationship Column", width="medium", options=col_names, required=True, ), "CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn( "Available Child Table Relationship Column", width="medium", options=col_names, required=True, ), "CARDINALITY": st.column_config.SelectboxColumn( "Cardinality", width="medium", options=['1:1','1:N','N:1','N:N'], required=True, ) }, hide_index=True, num_rows = 'dynamic', use_container_width = True ) for i,row in edited_map_df.iterrows(): pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values) cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values) match = [val for val in pvals if val in cvals] #st.write(match) if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist: st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}") else: pass if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist: st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}") else: pass if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist): pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values) cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values) match = [val for val in pvals if val in cvals] if match == []: st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ") if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []): # primary_check = len(list(dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)) == dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].nunique() # if primary_check: # pass # else: # st.error(f"The Column {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} has duplicate records and hence can not be considered as Primary Key.") pass add = st.button("Add Relationship", key='add') if add: if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])): add_df = edited_map_df else: add_df = st.session_state.rdf else: add_df = st.session_state.rdf add_df['CARDINALITY'] = add_df.apply( lambda row: cardinality( st.session_state.dataframes[str(row['PARENT TABLE'])], st.session_state.dataframes[str(row['CHILD TABLE'])], str(row['PARENT TABLE RELATIONSHIP COLUMN']), str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1) st.session_state.add_df = add_df edited_map_df = st.session_state.add_df rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values) unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs] st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""") G, table_columns = create_er_diagram(st.session_state.add_df) img_bytes= draw_er_diagram(G, table_columns) col21, col22= st.columns([1,8]) with col21: if st.button("Regenerate"): st.rerun() with col22: st.download_button( label="Download ER Diagram", data=img_bytes, file_name="er_diagram.png", mime="image/png" ) ###### if __name__ == '__main__': main()