# -*- coding: utf-8 -*- import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer import regex as re import streamlit as st import pyodbc import datetime import google.generativeai as genai import textwrap import json from streamlit_extras.stateful_button import button from streamlit_extras.stylable_container import stylable_container import sdv from sdv.metadata import MultiTableMetadata from collections import defaultdict import pymssql genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w') # Create a GenerativeModel instance model = genai.GenerativeModel( model_name='models/gemini-1.5-flash' ) def read_excel(path, sheet): df = pd.read_excel(path, sheet_name = sheet, dtype = 'str') return df def split_join_condition(join_condition): conditions = [] condition = '' bracket_count = 0 for char in join_condition: if char == '(': bracket_count += 1 elif char == ')': bracket_count -+ 1 if char == ',' and bracket_count == 0: conditions.append(condition.strip()) condition = '' else: condition += char if condition: conditions.append(condition.strip()) return conditions def join_incr(join_conditions): join = [] join_pattern = re.compile(r'(\w+\.\w+)\s*=\s*(\w+\w.\w+)', re.IGNORECASE) for join_condition in join_conditions: parts = re.split(r'\sAND\s|\sOR\s', join_condition, flags = re.IGNORECASE) temp = [x.strip() for x in parts if join_pattern.match(x.strip())] join.append(' AND '.join(temp)) return join def generate_sql(temp_table): proc_query = [] base_table = None source_table_schema = 'MAIN.GOLD' temp_table_schema = 'MAIN.GOLD' base_pk = [] join_fields = set() for _,row in df.iterrows(): source_table = row['Source Table'] primary_key = row['Primary Key'] source_column = row['Source Column'] alias = row['Alias'] joining_keys = row['Joining Keys'] if not base_table: if primary_key == 'Y': base_table = source_table base_pk.append(joining_keys) if pd.notna(joining_keys): keys = [x.strip() for x in joining_keys.split(',')] for x in keys: if x not in join_fields: join_fields.add(x) unique_cols = ['Source Table', 'Joining Keys', 'Primary Key', 'Join Type','Join Tables','Join Condition'] unique_df = df.drop_duplicates(subset = unique_cols) incremantal_mapping = {} incr_joins = {} for _,row in unique_df.iterrows(): source_table = row['Source Table'] source_column = row['Source Column'] joining_keys = row['Joining Keys'] primary_key = row['Primary Key'] direct_derived = row['Direct/Derived'] join_type = row['Join Type'] join_tables = row['Join Tables'] join_condition = row['Join Condition'] if source_table == base_table: if primary_key == 'Y': key = (source_table, joining_keys, join_type, join_tables, join_condition) key1 = source_table else: continue else: key = (source_table, joining_keys, join_type, join_tables, join_condition) key1 = source_table if pd.notna(direct_derived) and pd.notna(source_table) and pd.notna(source_column): if key not in incremantal_mapping: incremantal_mapping[key] = { 'source_table': source_table, 'joining_keys':joining_keys, 'join_type': join_type, 'join_tables': join_tables, 'join_condition': join_condition } if key1 not in incr_joins: if pd.notna(direct_derived) and direct_derived == 'DERIVED': incr_joins[key1] = { 'join_type': join_type, 'join_tables': ', '.join([x.strip() for x in join_tables.split(',') if x != base_table]), 'join_condition': join_condition } incremental_df = pd.DataFrame(incremantal_mapping.values()) incr_join_grps = incremental_df.groupby(['source_table']) proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.{temp_table}_INCR;') incr_table_join_info = {} for _,row in incremental_df.iterrows(): source_table = row['source_table'] if source_table != base_table: joining_keys = row['joining_keys'] join_type = row['join_type'] join_tables = [x.strip() for x in row['join_tables'].split(',')] index = join_tables.index(source_table) join_condition = [x.strip() for x in row['join_condition'].split(',')][0:index] incr_table_join_info[source_table] = ', '.join(join_condition) incr_query = [] incr_cols = '' incr_tables = [] incr_join = {} for _, group in incr_join_grps: for table in _.split(): if base_table != table: join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')] join_keys = [t.strip() for t in ','.join(base_pk).split(',')] join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')] join_cond = split_join_condition(incr_table_join_info[table]) join_condition = join_incr(join_cond) source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')] join_key_list = [] for x in join_keys: join_key_list.append(f'{base_table}.{x}') join_key = ', '.join(join_key_list) for y in source_table: sql = f""" INSERT INTO {temp_table_schema}.{temp_table}_INCR ( SELECT {join_key}, {table_details_mapping[y][0]}, {table_details_mapping[y][1]}, '{y}', 1, CURRENT_TIMESTAMP FROM {source_table_schema}.{base_table} {base_table}""" incr_join_text = '' for i in range(len(join_condition)): sql += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}' incr_join_text += f'\n\t{join_type[i]} JOIN {source_table_schema}.{join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}' incr_join[y] = incr_join_text sql += f""" WHERE COALESCE({join_tables[i+1]}.operation,'NA') <> 'D' AND TO_TIMESTAMP( CAST(SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),1,4) || '-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),5,2) ||'-' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),7,2) || ' ' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),9,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),11,2) ||':' || SUBSTRING(({join_tables[i+1]}._hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS') > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{y}') );""" incr_query.append(sql) incr_tables.append(y) else: source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')] join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')] join_key_list = [] for x in join_keys: join_key_list.append(f'{base_table}.{x}') join_key = ', '.join(join_key_list) incr_cols = join_key sql = f""" INSERT INTO {temp_table_schema}.{temp_table}_INCR ( SELECT {join_key}, {table_details_mapping[base_table][0]}, {table_details_mapping[base_table][1]}, '{base_table}', 1, CURRENT_TIMESTAMP FROM {source_table_schema}.{base_table} {base_table} WHERE COALESCE(operation,'NA') <> 'D' AND TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS') > (SELECT MAX(max_update_date) FROM audit.reportingdb_audit_tbl_{temp_table} WHERE mart_table_name='{temp_table}' and src_table_name='{base_table}') );""" proc_query.append(sql) incr_tables.append(base_table) proc_query.append('\n'.join(incr_query)) proc_query.append(f'TRUNCATE TABLE {temp_table_schema}.INCR1_{temp_table};') sql = f""" INSERT INTO {temp_table_schema}.INCR1_{temp_table} ( SELECT DISTINCT {incr_cols.replace(f'{base_table}.', '')} FROM {temp_table_schema}.{temp_table}_INCR );""" proc_query.append(sql) incr_table_dict = {} for table in incr_tables: if table == base_table: incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}' else: p = [x for x in incr_join[table].split('\n\t') if len(x) > 1] if len(p) == 1: incr_table_dict[table] = f'{temp_table_schema}.INCR2_{table}' else: incr_table_dict[table] = f'{source_table_schema}.{table}' s = [] for table in incr_tables: incr2_sql_list = [] if table == base_table: for key in incr_cols.replace(f'{base_table}.', '').split(','): incr2_sql_list.append(f"{base_table}.{key} = A.{key}") incr2_sql_join = ' AND '.join(incr2_sql_list) sql = f""" CREATE TABLE {temp_table_schema}.INCR2_{table} AS SELECT {table}.* FROM {source_table_schema}.{table} {table} INNER JOIN {temp_table_schema}.INCR1_{temp_table} A ON {incr2_sql_join}; """ proc_query.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};') proc_query.append(sql) else: p = [x for x in incr_join[table].split('\n\t') if len(x) > 1] if len(p) == 1: sql = f""" CREATE TABLE {temp_table_schema}.INCR2_{table} AS SELECT {table}.* FROM {temp_table_schema}.INCR2_{base_table} {base_table} {incr_join[table]};""" s.append(f'DROP TABLE IF EXISTS {temp_table_schema}.INCR2_{table};') s.append(sql) for x in s: proc_query.append(x) select_clause = [] from_clause = [] where_clause = [] for _,row in df.iterrows(): field_name = row['Field_Name'] source_table = row['Source Table'] source_column = row['Source Column'] joining_keys = row['Joining Keys'] primary_key = row['Primary Key'] direct_derived = row['Direct/Derived'] join_type = row['Join Type'] join_tables = row['Join Tables'] join_condition = row['Join Condition'] column_operation = row['Column Operations'] alias = row['Alias'] granularity = row['Granularity'] filter_condition = row['Filter Condition'] clauses = row['Clauses'] ordering = row['Ordering'] if pd.notna(direct_derived): if pd.notna(column_operation): if len(column_operation.split()) == 1: select_expr = f'{column_operation.upper()}({source_table}.{source_column})' else: select_expr = column_operation else: if pd.notna(source_table): select_expr = f'{source_table}.{source_column}' else: select_expr = source_column if source_column not in join_fields: if pd.notna(alias): select_expr += f' AS {alias}' else: if pd.notna(column_operation) and pd.notna(source_column): select_expr += f' AS {source_column}' if direct_derived.upper() == 'DIRECT': select_clause.append(select_expr) elif direct_derived.upper() == 'DERIVED_BASE': select_clause.append(select_expr) if pd.notna(filter_condition): where_clause.append(filter_condition) select_query = ',\n\t'.join(select_clause) sql_query = f"CREATE TABLE {temp_table_schema}.{base_table}_BASE\nAS \n\tSELECT \n\t{select_query} \nFROM\n\t{incr_table_dict[base_table]} {base_table}" if where_clause: sql_query += f"\nWHERE {' AND'.join(where_clause)}" sql_query += ';' proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{base_table}_BASE;") proc_query.append(sql_query) df['Clauses'].fillna('', inplace = True) df['Ordering'].fillna('', inplace = True) c = 1 temp_base_table = f'{base_table}_BASE' grp_cols = ['Join Condition', 'Clauses', 'Ordering'] join_grps = df[df['Direct/Derived'] == 'DERIVED'].groupby(['Join Condition', 'Clauses', 'Ordering']) temp_tables_sql = [] for (join_condition,clauses,ordering), group in join_grps: if pd.notna(group['Direct/Derived'].iloc[0]): if group['Direct/Derived'].iloc[0].upper() == 'DERIVED': join_tables = [t.strip() for t in group['Join Tables'].iloc[0].split(',')] join_keys = [t.strip() for t in group['Joining Keys'].iloc[0].split(',')] join_type = [t.strip() for t in group['Join Type'].iloc[0].split(',')] join_condition = split_join_condition(group['Join Condition'].iloc[0]) temp_table_name = f"TEMP_{group['Source Table'].iloc[0]}" source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')] alias = [t.strip() for t in (','.join(group['Alias'])).split(',')] source_table = [t.strip() for t in (','.join(group['Source Table'])).split(',')] base_cols = [] for join_key in join_keys: base_cols.append(f'{join_tables[0]}.{join_key}') for s_table,col,alias in zip(source_table,source_column,alias): if pd.notna(group['Column Operations'].iloc[0]): if len(group['Column Operations'].iloc[0].split()) == 1: select_expr = f"{group['Column Operations'].iloc[0].upper()}({s_table}.{col})" else: select_expr = group['Column Operations'].iloc[0] else: if pd.notna(s_table): select_expr = f"{s_table}.{col}" else: select_expr = col if alias: select_expr += f" AS {alias}" base_cols.append(select_expr) if ordering: base_cols.append(f"{ordering} AS RN") sql = ',\n\t\t'.join(base_cols) join_sql = f"SELECT \n\t\t{sql} \nFROM\n\t{incr_table_dict[base_table]} {join_tables[0]}" for i in range(len(join_type)): join_sql += f'\n\t{join_type[i]} JOIN {incr_table_dict[join_tables[i+1]]} {join_tables[i+1]} ON {join_condition[i]}' if clauses: join_sql += f'\n\t{clauses}' join_sql += ';' proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.{temp_table_name};") proc_query.append(f"CREATE TABLE {temp_table_schema}.{temp_table_name}\nAS \n\t{join_sql}") granularity = [t.strip() for t in group['Granularity'].iloc[0].split(',')] sql = [] for key in join_keys: sql.append(f"A.{key} = B.{key}") temp_cols = [] temp_cols.append('A.*') source_column = [t.strip() for t in (','.join(group['Source Column'])).split(',')] alias = [t.strip() for t in (','.join(group['Alias'])).split(',')] for col,alias in zip(source_column,alias): select_expr = f"B.{col}" if alias: select_expr = f"B.{alias}" else: select_expr = f"B.{col}" temp_cols.append(select_expr) temp_select_query = ',\n\t\t'.join(temp_cols) proc_query.append(f"DROP TABLE IF EXISTS {temp_table_schema}.TEMP_{temp_table}_{c};") base_sql = f"CREATE TABLE {temp_table_schema}.TEMP_{temp_table}_{c}\nAS \n\tSELECT \n\t\t{temp_select_query} \nFROM\n\t{temp_table_schema}.{temp_base_table} AS A" base_sql += f"\n\tLEFT OUTER JOIN {temp_table_schema}.{temp_table_name} B ON {' AND '.join(sql)}" if '1:1' in granularity and len(ordering) > 1: base_sql += f" AND B.RN = 1" base_sql += ';' temp_base_table = f'TEMP_{temp_table}_{c}' c += 1 proc_query.append(base_sql) fin_table_name = temp_table fin_table_cols = [] for _,row in df.iterrows(): field_name = row['Field_Name'] source_table = row['Source Table'] source_column = row['Source Column'] alias = row['Alias'] if pd.notna(row['Direct/Derived']): if (source_column in join_fields): fin_table_cols.append(f'{source_column} AS "{field_name}"') else: fin_table_cols.append(f'"{field_name}"') fin_table_cols = ',\n\t\t'.join(fin_table_cols) fin_sql = f"INSERT INTO {temp_table_schema}.{fin_table_name}\n\tSELECT \n\t\t{fin_table_cols} \nFROM\n\t{temp_table_schema}.TEMP_{temp_table}_{c-1};" condition_col = '_'.join(incr_cols.replace(f'{base_table}.', '').split(',')) proc_query.append(f"DELETE FROM {temp_table_schema}.{fin_table_name}\nWHERE {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} IN (SELECT {'_'.join(incr_cols.replace(f'{base_table}.', '').split(','))} FROM {temp_table_schema}.INCR1_{temp_table});") proc_query.append(fin_sql) for table in incr_tables: sql = f""" INSERT INTO audit.reportingdb_audit_tbl_{temp_table} ( SELECT '{temp_table}' as mart_table_name, '{table}' as src_table_name, coalesce( max(TO_TIMESTAMP( CAST(SUBSTRING((_hoodie_commit_time),1,4) || '-' || SUBSTRING((_hoodie_commit_time),5,2) ||'-' || SUBSTRING((_hoodie_commit_time),7,2) || ' ' || SUBSTRING((_hoodie_commit_time),9,2) ||':' || SUBSTRING((_hoodie_commit_time),11,2) ||':' || SUBSTRING((_hoodie_commit_time),13,2) AS VARCHAR(30)), 'YYYY-MM-DD HH:MI:SS')),(select max(max_update_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) max_update_date, CURRENT_TIMESTAMP as load_timestamp, coalesce(max(prev_updt_ts),(select max(source_reference_date) from audit.reportingdb_audit_tbl_{temp_table} where Mart_Table_Name='{temp_table}' and Src_Table_Name= '{table}')) AS source_reference_date, max(nvl(batch_number,0))+1 FROM {temp_table_schema}.{temp_table}_INCR where table_name = '{table}' );""" proc_query.append(sql) return base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema def create_df(query, table_df_mapping, table_usage_count): script = [] query = ' '.join(query.split()).strip() match = re.match(r'CREATE TABLE (\w+\.\w+\.\w+) AS (SELECT .+)', query, re.IGNORECASE) source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE) source_tables = [table for pair in source_tables for table in pair if table] if not match: raise ValueError('Invalid SQL') table_name = match.group(1).split('.')[2] select_statement = match.group(2) create_script = f'{table_name} = spark.sql(""" {select_statement} """)' persist_script = f'{table_name} = {table_name}.persist()' view_script = f'{table_name}.createOrReplaceTempView("{table_name}")' for table in source_tables: create_script = create_script.replace(table, table_df_mapping[table]) script.append(f"\n\t\t######################---------Creating table {create_script.split('=')[0].strip()}-------############################") script.append(create_script) script.append(persist_script) script.append(view_script) script.append(f'''print("{create_script.split('=')[0].strip()} count: ", {create_script.split('=')[0].strip()}.count()''') if 'INCR2_' in table_name: x = table_name.split('INCR2_')[1] if x in table_details_mapping.keys(): script.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################") script.append(f"{x}_max_update_date = INCR2_{x}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]") script.append(f"{x}_max_source_reference_date = INCR2_{x}.agg(max(to_timestamp('{table_details_mapping[x][1].replace(x+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]") script.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{x}',{x}_max_update_date,{x}_max_source_reference_date, max_batch_id, config)") script.append('\n') for table in source_tables: table_usage_count[table.split('.')[2]] -= 1 for table in source_tables: if table_usage_count[table.split('.')[2]] == 0 and 'INCR1_' not in table: unpersist_script = f"{table.split('.')[2]}.unpersist()" script.append(unpersist_script) return '\n\t\t'.join(script) def generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema): table_usage_count = defaultdict(int) table_df_mapping = {} for query in proc_query: if 'CREATE TABLE' or 'DELETE' in query: source_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE) source_tables = [table for pair in source_tables for table in pair if table] for table in source_tables: table_usage_count[table.split('.')[2]] += 1 if 'DELETE' not in query: table_df_mapping[table] = table.split('.')[2] script = [] for query in proc_query: if 'CREATE TABLE' in query: script.append(create_df(query, table_df_mapping,table_usage_count)) spark_query = [] spark_query.append("\t\t######################---------Reading source data -------############################") for table in table_details_mapping.keys(): spark_query.append(f'{table} = read_file(spark, config, \"{table}\").filter("{table_details_mapping[table][2]}")') spark_query.append(f'{table} = {table}.persist()') spark_query.append(f'{table}.createOrReplaceTempView("{table}")') spark_query.append(f'print("{table} count: ", {table}.count()') spark_query.append('\n') spark_query.append("\n\t\t######################---------Reading records-------############################") for table in table_details_mapping.keys(): spark_query.append(f"{table}_max_update_date = read_max_update_date(redshift_conn, config['application_name'],'{table}', config)") spark_query.append(f'{table}_max_update_date = {table}_max_update_date[0][0]') spark_query.append('\n') incr1_spark = [] temp_incr1 = [] for _, group in incr_join_grps: for table in _.split(): if base_table != table: join_tables = [t.strip() for t in group['join_tables'].iloc[0].split(',')] join_keys = [t.strip() for t in ','.join(base_pk).split(',')] join_type = [t.strip() for t in group['join_type'].iloc[0].split(',')] join_cond = split_join_condition(incr_table_join_info[table]) join_condition = join_incr(join_cond) source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')] join_key_list = [] for x in join_keys: join_key_list.append(f'{base_table}.{x}') join_key = ', '.join(join_key_list) for y in source_table: sql = f"""SELECT {join_key} FROM {base_table} {base_table}""" incr_join_text = '' i=0 for i in range(len(join_condition)): sql += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}' incr_join_text += f' {join_type[i]} JOIN {join_tables[i+1]} {join_tables[i+1]} ON {join_condition[i]}' sql += f''' WHERE {join_tables[i+1]}._hoodie_commit_time > cast('"""+str({join_tables[i+1]}_max_update_date)+"""' as timestamp)''' temp_incr1.append(sql) else: source_table = [t.strip() for t in group['source_table'].iloc[0].split(',')] join_keys = [t.strip() for t in group['joining_keys'].iloc[0].split(',')] join_key_list = [] for x in join_keys: join_key_list.append(f'{base_table}.{x}') join_key = ', '.join(join_key_list) sql = f'''SELECT {join_key} FROM {base_table} {base_table} WHERE {base_table}._hoodie_commit_time > cast('"""+str({base_table}_max_update_date)+"""' as timestamp)''' incr1_spark.append(sql) for i in temp_incr1: incr1_spark.append(i) incr1_spark = '\nUNION\n'.join(incr1_spark) spark_query.append("\n\t\t######################---------Creating INCR1-------############################") spark_query.append(f'INCR1_{temp_table} = spark.sql(""" {incr1_spark} """)') spark_query.append(f'\n\t\tINCR1_{temp_table} = INCR1_{temp_table}.dropDuplicates()') spark_query.append(f'INCR1_{temp_table} = INCR1_{temp_table}.persist()') spark_query.append(f'INCR1_{temp_table}.createOrReplaceTempView("INCR1_{temp_table}")') spark_query.append(f'print("INCR1_{temp_table} count: ", INCR1_{temp_table}.count())') spark_query.append("\n\t\t######################---------Creating INCR2-------############################") for table in table_details_mapping.keys(): if table in incr_join.keys(): p = [x for x in incr_join[table].split('\n\t') if len(x) > 1] if len(p) > 1: spark_query.append(f"\n\t\t######################---------Updating the max_update_date in audit-------############################") spark_query.append(f"{table}_max_update_date = {table}.agg({{'_hoodie_commit_time' : 'max'}}).first()[0]") spark_query.append(f"{table}_max_source_reference_date = {table}.agg(max(to_timestamp('{table_details_mapping[table][1].replace(table+'.','')}','yyyy-MM-dd-HH.mm.ss.SSSSSS'))).first()[0]") spark_query.append(f"insert_max_update_date(spark,redshift_conn, config['application_name'],'{table}',{table}_max_update_date,{table}_max_source_reference_date, max_batch_id, config)") spark_query.append('\n') for query in script: spark_query.append(query) spark_query.append('\n') spark_query1 = [] spark_query1.append('\n') for query in proc_query: if f'{temp_table_schema}.{temp_table}\n' in query: final_tables = re.findall(r'\bFROM\s+(\w+\.\w+\.\w+)|\bJOIN\s+(\w+\.\w+\.\w+)', query, re.IGNORECASE) final_tables = [table.split('.')[2].strip() for pair in final_tables for table in pair if table and table.split('.')[2].strip() != temp_table][0] if 'INCR1_' in final_tables: spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['incr2df_path'])") else: spark_query.append(f"{final_tables}.write.mode('overwrite').parquet(config['resultdf_path'])") spark_query1.append(f'''cur.execute(""" {query} """)''') spark_query1.append('\n') with open('template.txt') as file: template = file.read() result = template.replace('INSERT_CODE_1', '\n\t\t'.join(spark_query)) result = result.replace('INSERT_CODE_2', '\t\t'.join(spark_query1)) return result st.set_page_config(page_title='AUTOMATED SOURCE TO TARGET MAPPING', layout= 'wide') st.markdown(""" """, unsafe_allow_html=True) st.subheader('AUTOMATED SOURCE TO TARGET MAPPING') mode= st.selectbox('Select Mode of Mapping',('Supervised Mapping(You Have Sufficient Sample Data in Target Template)', 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)'), index=None,placeholder='Select category of table') if mode == 'Supervised Mapping(You Have Sufficient Sample Data in Target Template)': conn = pymssql.connect( "Server=sql-ext-dev-uks-001.database.windows.net;" "Database=sqldb-ext-dev-uks-001;" "UID=dbadmin;" "PWD=mYpa$$w0rD" ) query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC" table1=pd.read_sql_query(query1,con=conn) st.session_state.table1_un= table1 table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str') colsel1, colsel2= st.columns(2) with colsel1: table_selector=st.selectbox('SOURCE TABLE NAME',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],index=None,placeholder='Select table for automated column mapping') with colsel2: target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAAPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table') st.session_state.target_selector_un = target_selector #migrate_opt=st.toggle('DO YOU ALSO WANT TO MIGRATE DATA TO TARGET TABLE') if table_selector is not None and target_selector is not None: btn=button('RUN',key='RUN_GENAI_UN') if target_selector is not None and btn and f'{table_selector}_{target_selector}_map_un' not in st.session_state: query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+table_selector+"]" i_df = pd.read_sql_query(query2,con=conn) # conn.close() i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1) st.session_state['source_data_un'] = i_df #st.markdown('---') # st.subheader('Souce Data Preview') # st.dataframe(i_df) query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]" tgt_df=pd.read_sql_query(query3,con=conn).reset_index(drop=True) main_list=tgt_df.columns.to_list() sub_list=['ID','LOADID','FILE_NAME'] if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)): tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1) st.session_state.opt_un= list(tgt_df.columns) st.session_state['target_data_un'] = tgt_df.head(20).reset_index() # if tgt: # # st.subheader('Target Table Preview') # # st.write(tgt_df.sample(20).reset_index(drop=True)) # # st.markdown('---') with st.spinner('Running data on neural network...'): df=pd.read_csv('C:\\Applications\\MARCO POLO O AIML\\DATA CATALOG\\pages\\CUSTOMER_MASTER_TRAIN_1306.csv') #POLICY cols=df.columns.tolist() data=pd.DataFrame(columns=['DATA','LABEL']) temp=pd.DataFrame(columns=['DATA','LABEL']) for x in cols: temp['DATA']=df[x] temp['LABEL']=x data=pd.concat([data,temp],ignore_index=True) data['DATA']=data['DATA'].astype('string') data['LABEL']=data['LABEL'].astype('string') data=data.dropna() data=data.reset_index(drop=True) #FEATURE_EXTRACTION BAG OF CHARACTERS vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(1, 3), min_df=1) X=vectorizer.fit_transform(data['DATA']) feature=pd.DataFrame(data=X.toarray(),columns=vectorizer.get_feature_names_out()) data1=pd.concat([data,feature],axis=1) #FEATURE_SELECTION from sklearn.feature_selection import chi2 chi_x=data1.drop(['DATA','LABEL'],axis=1) chi_y=data1['LABEL'] chi_scores=chi2(chi_x,chi_y) p_values=pd.Series(chi_scores[1],index=chi_x.columns) p_values=p_values.sort_values(ascending=True).reset_index() feature_chi=p_values['index'][:1000] data2=data1[feature_chi.to_list()] data2=pd.concat([data,data2],axis=1) #FEATURE EXTRACTION GENERAL def count_digits(str1): return len("".join(re.findall("\d+", str1))) def count_vowels(string): vowels = "aeiouAEIOU" count = 0 for char in string: if char in vowels: count += 1 return count def count_special_character(string): special_characters = "!@#$%^&*()-+?_=,<>/" special_char = 0 for i in range(0, len(string)): if (string[i] in special_characters): special_char += 1 return special_char def count_spaces(string): spaces = 0 for char in string: if char == " ": spaces += 1 return spaces data2['LENGTH']=data2['DATA'].apply(lambda x:len(x)) data2['digit_c']=data2['DATA'].apply(lambda x:count_digits(x)) data2['vowel_c']=data2['DATA'].apply(lambda x:count_vowels(x)) data2['spchar_c']=data2['DATA'].apply(lambda x:count_special_character(x)) data2['space_c']=data2['DATA'].apply(lambda x:count_spaces(x)) chi_scores1=chi2(data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']],data2['LABEL']) p_values1=pd.Series(chi_scores1[1],index=data2[['LENGTH','digit_c','vowel_c','spchar_c','space_c']].columns).sort_values(ascending=True).reset_index() #MODEL import tensorflow as tf from tensorflow.keras import layers from tensorflow import keras from sklearn.model_selection import train_test_split from ast import literal_eval train_df, test_df = train_test_split(data2,test_size=.1,stratify=data2['LABEL'].values) val_df = test_df.sample(frac=0.5) test_df.drop(val_df.index, inplace=True) terms = tf.ragged.constant(data2['LABEL'].values) lookup = tf.keras.layers.StringLookup(output_mode="one_hot") lookup.adapt(terms) vocab = lookup.get_vocabulary() def invert_multi_hot(encoded_labels): hot_indices = np.argwhere(encoded_labels == 1.0)[..., 0] return np.take(vocab, hot_indices) max_seqlen = 150 batch_size = 128 padding_token = "" auto = tf.data.AUTOTUNE feature_tf=data2.columns.tolist()[2:] def make_dataset(dataframe,feature,batch_size,is_train=True): labels = tf.ragged.constant(dataframe["LABEL"].values) label_binarized = lookup(labels).numpy() dataset = tf.data.Dataset.from_tensor_slices( (dataframe[feature].values, label_binarized) ) dataset = dataset.shuffle(batch_size * 10) if is_train else dataset return dataset.batch(batch_size) train_dataset = make_dataset(train_df,feature_tf,batch_size, is_train=True) validation_dataset = make_dataset(val_df,feature_tf,batch_size, is_train=False) test_dataset = make_dataset(test_df,feature_tf,batch_size, is_train=False) shallow_mlp_model = keras.Sequential( [ layers.Dense(512, activation="relu"), layers.Dense(256, activation="relu"), layers.Dense(lookup.vocabulary_size(), activation="softmax"), ] ) shallow_mlp_model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["CategoricalAccuracy"]) epochs=20 history = shallow_mlp_model.fit(train_dataset, validation_data=validation_dataset, epochs=epochs) #MODEL TEST _, category_acc = shallow_mlp_model.evaluate(test_dataset) #INPUT PREPROCESSING i_cols=i_df.columns i_cols=i_df.columns.tolist() i_data=pd.DataFrame(columns=['DATA','LABEL']) i_temp=pd.DataFrame(columns=['DATA','LABEL']) for x in i_cols: i_temp['DATA']=i_df[x] i_temp['LABEL']=x i_data=pd.concat([i_data,i_temp],ignore_index=True) i_data['DATA']=i_data['DATA'].astype('string') i_data['LABEL']=i_data['LABEL'].astype('string') i_data=i_data.dropna() i_data=i_data.reset_index(drop=True) i_X=vectorizer.transform(i_data['DATA']) i_feature=pd.DataFrame(data=i_X.toarray(),columns=vectorizer.get_feature_names_out()) i_data1=pd.concat([i_data,i_feature],axis=1) i_data2=i_data1[feature_chi.to_list()] i_data2=pd.concat([i_data,i_data2],axis=1) i_data2['LENGTH']=i_data2['DATA'].apply(lambda x:len(x)) i_data2['digit_c']=i_data2['DATA'].apply(lambda x:count_digits(x)) i_data2['vowel_c']=i_data2['DATA'].apply(lambda x:count_vowels(x)) i_data2['spchar_c']=i_data2['DATA'].apply(lambda x:count_special_character(x)) i_data2['space_c']=i_data2['DATA'].apply(lambda x:count_spaces(x)) i_run_dataset=tf.data.Dataset.from_tensor_slices((i_data2[feature_tf].values,lookup(tf.ragged.constant(i_data2["LABEL"].values)).numpy())).batch(649) i_predicted_probabilities = shallow_mlp_model.predict(i_run_dataset) i_predicted_labels = np.where(i_predicted_probabilities == i_predicted_probabilities.max(axis=1, keepdims=True), 1, 0) i_predicted_label_df=pd.DataFrame(i_predicted_labels,columns=vocab) i_predicted_label_df1=pd.concat([i_data,i_predicted_label_df],axis=1) i_predicted_label_df1['PREDICTION']=i_predicted_label_df1[vocab].idxmax(axis=1) i_result=i_predicted_label_df1[['DATA','LABEL','PREDICTION']] column_mapping=pd.DataFrame(columns=['source','target']) temp_column_mapping=pd.DataFrame(columns=['source','target']) for i in i_df.columns.to_list(): temp_df1=i_result.loc[i_result['LABEL']==i] temp_max=temp_df1['PREDICTION'].value_counts().idxmax() temp_column_mapping.loc[0]=[i,temp_max] column_mapping=pd.concat([column_mapping,temp_column_mapping],ignore_index=True) not_null=i_df.count().reset_index() tot_rows=i_df.shape[0] not_null['not null percentage']=not_null[0]/tot_rows coltobemodified=not_null[not_null['not null percentage']<.05]['index'].to_list() column_mapping.loc[column_mapping['source'].isin(coltobemodified), 'target'] = '**TOO FEW COLUMN VALUES**' st.success('Mapping completed successfully!') st.session_state[f'{table_selector}_{target_selector}_map_un'] = column_mapping.copy() # st.subheader('MAPPED COLUMN') # st.dataframe(column_mapping) if f'{table_selector}_{target_selector}_map_un' in st.session_state and btn: taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview']) with tabb: st.subheader('Souce Data Preview') with stylable_container( key=f"source_container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): st.dataframe(st.session_state['source_data_un']) with tabc: st.subheader('Target Table Preview') with stylable_container( key=f"target_container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): st.write(st.session_state['target_data_un']) with taba: st.subheader("Mapping Generated:") with stylable_container( key=f"container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): edited_map_df = st.data_editor( st.session_state[f'{table_selector}_{target_selector}_map_un'], column_config={ "target": st.column_config.SelectboxColumn( "Available Column Names", help="Please Verify/Change the Target Column Mapping", width="medium", options=st.session_state.opt_un, required=True, ) }, hide_index=False, num_rows = 'fixed', use_container_width = True ) val = button("Validate", key="Val_un") if val: st.session_state[f'{table_selector}_{target_selector}_map_un'].update(edited_map_df) dup= len(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated()]) if dup != 0: dup_index= list(st.session_state[f'{table_selector}_{target_selector}_map_un'][st.session_state[f'{table_selector}_{target_selector}_map_un']['target'].duplicated(keep=False)].index) dup_mess=str(dup_index[0]) for val in dup_index[1:]: dup_mess = dup_mess + f' and {str(val)}' st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}") else: st.success("Mapping Validated! You can proceed for Mapping") migrate= st.button("Mapping") if migrate: st.subheader('Mapping PHASE') m_queiry1="select count(*) as TARGET_COUNT_CURRENT from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]" #st.write(m_queiry1) old_count=pd.read_sql_query(m_queiry1,con=conn) st.write('RECORDS IN TARGET TABLE BEFORE Mapping',old_count) with st.spinner('Mapping in progress...'): cursor1=conn.cursor() q1='INSERT INTO ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+st.session_state.target_selector_un+'] ("' q2=' select "' for i,x in enumerate(st.session_state['source_data_un'].columns.values.tolist()): t=st.session_state[f'{table_selector}_{target_selector}_map_un'].loc[st.session_state[f'{table_selector}_{target_selector}_map_un']['source']==x,'target'].values[0] if i==len(st.session_state['source_data_un'].columns.values.tolist())-1: q_temp1=t+'") ' q_temp2=x+'" ' else: q_temp1=t+'", "' q_temp2=x+'", "' q1=q1+q_temp1 q2=q2+q_temp2 #q_temp='INSERT INTO ['+ table1['TABLE_SCHEMA'][0]+'].['+target_selector+'] ("'+t+'") select "'+x+'" from ['+ table1['TABLE_SCHEMA'][0]+'].['+table_selector+']' # st.write(q) q=q1+q2+' from ['+ st.session_state.table1_un['TABLE_SCHEMA'][0]+'].['+table_selector+']' #st.write(q) cursor1.execute(q) conn.commit() # m_query2="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET ID=9999 WHERE ID IS NULL" # # cur_time=datetime.datetime.now().time().strftime("%Y%m%d%H%M%S") # m_query3="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET LOADID='LOADEDBYAI' WHERE LOADID IS NULL" # m_query4="UPDATE ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"] SET FILE_NAME='AUTOMATED_INSERT' WHERE FILE_NAME IS NULL" # cursor1.execute(m_query2) # cursor1.execute(m_query3) # cursor1.execute(m_query4) # conn.commit() st.success('Mapping completed successfully!') m_query5="select count(*) as TARGET_COUNT_AFTER_Mapping from ["+ st.session_state.table1_un['TABLE_SCHEMA'][0]+"].["+st.session_state.target_selector_un+"]" new_count=pd.read_sql_query(m_query5,con=conn) conn.close() st.write('RECORDS IN TARGET TABLE AFTER Mapping',new_count) if mode == 'Unsupervised Mapping(You Do Not Have Sufficient Sample Data in Target Template)': conn = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;" "Database=sqldb-ext-dev-uks-001;" "UID=dbadmin;" "PWD=mYpa$$w0rD" ) query1="select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='dbo' ORDER BY TABLE_NAME ASC" table1=pd.read_sql_query(query1,con=conn) st.session_state.table1= table1 table1['TABLE_NAME']=table1['TABLE_NAME'].astype('str') #col2sel1, col2sel2 = st.columns(2) table_selector=st.multiselect('SOURCE TABLE NAME(S)',['TCM', 'TCVM','TEM', 'TPM', 'TPP', 'TPT', 'TRM', 'TSCM', 'TSM'],default=None,placeholder='Select table for automated column mapping') #target_selector=st.selectbox('TARGET TABLE NAME',['POLICY_MAPPINGTARGET_TBL','FINANCE_MAPPINGTARGET_TBL','CUSTOMER_MASTER_TARGET'],index=None,placeholder='Select target table') target_selector = st.file_uploader("UPLOAD TARGET METADATA FILE", type=['csv']) tgt_name=None mapping_df=None if target_selector is not None: mapping_df = pd.read_csv(target_selector) tgt_name = target_selector.name required_columns = ['Field_Name', 'Primary Key'] if all(col in mapping_df.columns for col in required_columns): field_names = mapping_df['Field_Name'].tolist() tgt_df = pd.DataFrame(columns=field_names) st.session_state.target_selector = target_selector # mapping_selector = target_selector # st.session_state.mapping_selector = mapping_selector if mapping_df is not None: st.session_state.mapping_df = mapping_df if table_selector is not None: if len(table_selector)==1: query2="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+str(table_selector[0])+"]" i_df = pd.read_sql_query(query2,con=conn) # conn.close() if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns): i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1) elif len(table_selector)>1: dataframes = {} col_names = [] for tab in table_selector: query2_2= "select * from [dbo].["+tab+"]" dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn) col_names = col_names + list(dataframes[f'{tab}'].columns) tab_names = table_selector metadata = MultiTableMetadata() metadata.detect_from_dataframes( data= dataframes ) multi_python_dict = metadata.to_dict() rlist1=multi_python_dict['relationships'] relationships=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT PRIMARY KEY','CHILD FOREIGN KEY']) for i in range(len(rlist1)): rlist=rlist1[i] nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT PRIMARY KEY':rlist['parent_primary_key'],'CHILD FOREIGN KEY':rlist['child_foreign_key']},index=[i]) relationships=pd.concat([relationships,nrow],ignore_index=True) filtered_relationships = relationships[ (relationships['PARENT TABLE'].isin(table_selector)) & (relationships['CHILD TABLE'].isin(table_selector)) ] i_df = pd.DataFrame() for _, row in filtered_relationships.iterrows(): parent_table = row['PARENT TABLE'] child_table = row['CHILD TABLE'] parent_key = row['PARENT PRIMARY KEY'] child_key = row['CHILD FOREIGN KEY'] if parent_table in dataframes and child_table in dataframes: parent_df = dataframes[parent_table] child_df = dataframes[child_table] left_joined_df = pd.merge( parent_df, child_df, how='left', left_on=parent_key, right_on=child_key, suffixes=(f'_{parent_table}', f'_{child_table}') ) for col in child_df.columns: if col != child_key: left_joined_df.rename( columns={col: f'{col}_{parent_table}_{child_table}'}, inplace=True ) right_joined_df = pd.merge( parent_df, child_df, how='left', left_on=child_key, right_on=parent_key, suffixes=(f'_{child_table}', f'_{parent_table}') ) for col in child_df.columns: if col != child_key: left_joined_df.rename( columns={col: f'{col}_{child_table}_{parent_table}'}, inplace=True ) i_df = pd.concat([i_df, left_joined_df, right_joined_df], ignore_index=True) i_df = i_df.loc[:, ~i_df.columns.duplicated()] for table_name in table_selector: if table_name in dataframes: for col in dataframes[table_name].columns: if col in i_df.columns and not any([col.endswith(f'_{table_name}') for table in table_selector]): i_df.rename(columns={col: f'{col}_{table_name}'}, inplace=True) if set(['ID','LOADID','FILE_NAME']).issubset(i_df.columns): i_df=i_df.drop(['ID','LOADID','FILE_NAME'],axis=1) i_df = i_df.loc[:, ~i_df.columns.duplicated()] if table_selector is not None: if tgt_name is not None: btn= button('RUN', key='RUN_GENAI') if target_selector is not None and btn and f'{table_selector}_{tgt_name}_map' not in st.session_state: st.session_state['source_data'] = i_df.sample(20).reset_index() if target_selector is not None: #query3="select * from ["+ table1['TABLE_SCHEMA'][0]+"].["+target_selector+"]" #tgt_df=pd.read_sql_query(query3,con=conn) # if set(['ID','LOADID','FILE_NAME']).issubset(tgt_df.columns): # tgt_df=tgt_df.drop(['ID','LOADID','FILE_NAME'],axis=1) st.session_state['opt'] = list(tgt_df.columns) st.session_state['target_data'] = tgt_df.head(20).reset_index() with st.spinner('Processing Data...'): selected_df = pd.DataFrame() #st.write(i_df) # Iterate through each column for col in i_df.columns: # Filter non-null and non-blank values non_null_values = i_df[col][i_df[col] != ''].dropna().astype(str).str.strip().unique() # Select up to 10 values (or fewer if less than 10 non-null values) selected_values = list(non_null_values[:10]) selected_values = selected_values + [""] * (10 - len(selected_values)) # Add selected values to the new dataframe selected_df[col] = selected_values mapping_df = st.session_state.mapping_df # List of tables provided tables_list = table_selector # Dictionary to store the table columns table_columns = {} # Loop through each table in the list for table in tables_list: query = f"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '{table}'" cursor = conn.cursor() cursor.execute(query) # Fetch the column names for the current table columns = [row[0] for row in cursor.fetchall()] # Store the column names in the dictionary table_columns[table] = columns if 'table_columns' not in st.session_state: st.session_state.table_columns = table_columns story = f""" Details of the source table: table columns: {str(list(i_df.columns))} column datatypes: {str(i_df.dtypes.to_string())} table sample data: {selected_df.head(10).to_string()} Source Tables selected : {str(list(table_selector))} Source Table columns are given as (col_name)_(table_name) Joining conditions should be based on relationship table which is : {relationships.to_string()} Details of the target table: table columns: {str(list(tgt_df.columns))} column datatypes: {str(tgt_df.dtypes.to_string())} table sample data: {tgt_df.head(10).to_string()} mapping details: {mapping_df.to_string()} Source Column names should match from this dictionary: {str(table_columns)} """ response = model.generate_content( textwrap.dedent(""" Please return JSON describing the possible **one to one mapping** between source table and target table using this following schema: {"Mapping": list[MAPPING]} MAPPING = {"Target_Table": str, "Field_Name": str, "Source Table": str, "Source Column": str, "Joining Keys": str, "Primary Key": str, "Direct/Derived": str, "Join Tables": str, "Join Condition": str, "Mapping Confidence": percentage, "Column Operations": str, "Alias": str, "Granularity": str, "Filter Condition": str, "Clauses": str, "Ordering": str} The first six columns are provided in mapping details. **THE FIRST SIX COLUMNS OF JSON SHOULD HAVE EXACTLY SAME VALUES AS PROVIDED IN MAPPING DETAILS** **THE PRIMARY KEY IS COMING FROM THE PARENT TABLE. IF SOURCE TABLE IS NOT THE PRIMARY KEY TABLE, THEN 'Direct/Derived' SHOULD BE LABELLED AS DERIVED, OTHERWISE DIRECT** **JOIN TABLES SHOULD BE WRITTEN ONLY IN CASE OF DERIVED LABEL, JOIN TABLES SHOULD BE THE PARENT TABLE AND THE SOURCE TABLE (IF DIFFERENT)** **JOINING CONDITION SHOULD BE BASED ON THE TABLE AND COULMN WHICH HAS PRIMARY KEY AND JOINING TYPE SHOULD BE LEFT OUTER** **ALIAS SHOULD BE SAME AS FIELD_NAME, GRANULARITY SHOULD BE 1:1** 1. For example, Field_Name is 'Product Name', Source Table is 'TRM', Source Column is 'PRODUCT_NAME', 'Joining Keys':'PRODUCT_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TRM', 'Join Condition':'TPM.PRODUCT_ID=TRM.PRODUCT_ID', 'Alias': 'PRODUCT_NAME', 'Granularity': '1:1'} Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.PRODUCT_ID = TRM.PRODUCT_ID is joining condition 2. For example, Field_Name is 'Office Code', Source Table is 'TPM', Source Column is 'OFFICE_CD', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DIRECT', 'Join Type':None, 'Join Tables':None, 'Join Condition':None, 'Alias': 'OFFICE_CD', 'Granularity': '1:1'} Joining is not done since TPM is the parent table. So, 'Direct/Derived": 'DIRECT'. POLICY_ID is the primary key here. 3. For example, Field_Name is 'Policy Submission Date', Source Table is 'TSM', Source Column is 'POLICY_SUBMISSION_DT', 'Joining Keys':'POLICY_ID', 'Primary Key' not labelled, then {'Direct/Derived": 'DERIVED', 'Join Type':'LEFT OUTER', 'Join Tables':'TPM, TSM', 'Join Condition':'TPM.POLICY_ID=TRM.POLICY_ID', 'Alias': 'POLICY_SUBMISSION_DT', 'Granularity': '1:1'} Joining is done on TPM since the primary key POLICY_ID is taken from TPM table. So TPM.POLICY_ID = TRM.POLICY_ID is joining condition If Source Column is POLICY_ID_TPM, then change it to POLICY_ID. **Source Column should not contain the '_TPM', '_TRM', '_TSM', '_TPP' part at the end.** All Target fields are required. The JSON keys will be same as the column names in mapping details.Validate the mapping as given in mapping details. Ignore the columns where hardcoded values are there , such as Current Flag, Start Date, End Date, Etl Job ID,Etl Batch ID,Etl Inserted Date,Etl Updated Date. leave them blank. For other fields, there has to be mapping. If you are confused on which source tables to map, then provide MAPPING CONFIDENCE LESS THAN 90 ALL THE JSON KEYS ARE MANDATORY: 'Target_Table', 'Field_Name', 'Source Table', 'Source Column', 'Joining Keys', 'Primary Key', 'Direct/Derived', 'Join Type', 'Join Tables', 'Join Condition', 'Mapping Confidence', 'Column Operations', 'Alias', 'Granularity', 'Filter Condition', 'Clauses', 'Ordering' Important: Only return a single piece of valid JSON text. All fields are required. Please MAP all ***TARGET fields***. If you struggle to map then give low confidence score but YOU HAVE TO MAP ANYWAY. ****MAKE SURE IT IS A **one to one mapping** **** Here is the table details: """) + story ) res= response.text.replace("\n", '').replace("`", '').replace('json','') map = print(json.dumps(json.loads(res), indent=2)) data = json.loads(res) map_df = pd.json_normalize(data, record_path=['Mapping']) st.session_state[f'{table_selector}_{tgt_name}_map'] = map_df.copy() if f'{table_selector}_{tgt_name}_map' in st.session_state and btn: taba, tabb, tabc = st.tabs(['Mappings Generated', 'Source Table Preview', 'Target Table Preview']) with tabc: st.subheader('Target Table Preview') with stylable_container( key=f"source_container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): st.dataframe(st.session_state['target_data'].head(0)) with tabb: st.subheader('Source Table Preview') with stylable_container( key=f"target_container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): st.write(st.session_state['source_data']) with taba: st.subheader("Most Probable Mapping Generated:") with stylable_container( key=f"container_with_border", css_styles=""" { border: 1px solid white; border-radius: 0.5rem; padding: calc(1em - 1px); width: 103%; /* Set container width to 100% */ } """ ): edited_map_df = st.data_editor( st.session_state[f'{table_selector}_{tgt_name}_map'], column_config={ "Target Column Name": st.column_config.SelectboxColumn( "Target Columns", help="Please Verify/Change the Target Column Mapping", width="medium", options=st.session_state.opt, required=True, ) }, hide_index=False, num_rows = 'dynamic', use_container_width = True ) success_show=1 if success_show==1: st.success(f"{(edited_map_df['Mapping Confidence']>90).mean().round(2)*100}% of Columns Mapped with more than 90% Mapping Confidence") mapped_uploader = st.file_uploader("UPLOAD REVISED MAPPING (OPTIONAL)", type=['csv']) if mapped_uploader is not None: success_show=0 edited_map_df = pd.read_csv(mapped_uploader) st.write(edited_map_df) st.success("Mapping Revised!") val = button("Validate", key="Val") if val: st.session_state[f'{table_selector}_{tgt_name}_map'].update(edited_map_df) dup= len(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Field_Name'].duplicated()]) error_messages = [] table_columns = st.session_state.table_columns for _, (index, row) in enumerate(edited_map_df.iterrows()): source_table = row['Source Table'] source_column = row['Source Column'] if source_column not in table_columns.get(source_table, []) and (source_column is not None) and (source_table is not None) and (source_table in table_selector): error_messages.append(f"Column '{source_column}' not found in table '{source_table}'.\n") # Output success or error messages if error_messages: validation_result = "\n".join(error_messages) else: validation_result = "Success" if dup != 0: dup_index= list(st.session_state[f'{table_selector}_{tgt_name}_map'][st.session_state[f'{table_selector}_{tgt_name}_map']['Target Column Name'].duplicated(keep=False)].index) dup_mess=str(dup_index[0]) for val in dup_index[1:]: dup_mess = dup_mess + f' and {str(val)}' st.error(f"One to Many Column mapping Exists. Please Check Mapping Number: {dup_mess}") elif validation_result != "Success": st.error(validation_result) else: st.success("Mapping Validated!") df_tbl_dtls = pd.read_csv(r'tbl_dtl.csv') with pd.ExcelWriter('Final.xlsx') as writer: edited_map_df.to_excel(writer, sheet_name='POLICY', index=False) df_tbl_dtls.to_excel(writer, sheet_name='Table Details', index=False) path = 'Final.xlsx' temp_table = None for x in pd.ExcelFile(path).sheet_names: if x != 'Table Details': temp_table = x df = read_excel(path, temp_table) table_details_df = read_excel(path, 'Table Details') table_details_mapping = table_details_df.set_index('Table Name')[['ETL Timestamp','Change Timestamp','ETL Filter']].T.to_dict('list') base_table, base_pk, proc_query, incr_join_grps, incr_table_join_info, incr_join, temp_table_schema = generate_sql(temp_table) sql_query = '' for x in proc_query: sql_query += x sql_query += '\n' spark_sql = generate_spark(proc_query, incr_join_grps, base_table, base_pk, incr_table_join_info, incr_join, temp_table_schema) #out=edited_map_df.to_csv().encode('utf-8') col21, col22= st.columns([1,4]) with col21: st.download_button('Download SQL Statement', sql_query, file_name='sql_code.txt') with col22: st.download_button('Download Spark Statement', spark_sql, file_name='spark_code.txt') #st.download_button(label='DOWNLOAD MAPPING',data=out, file_name='S2T_Mapping.csv',mime='csv')