Spaces:
Sleeping
Sleeping
File size: 7,525 Bytes
0169c8b 6589e60 b31f6f5 6589e60 27bb768 bcc9a7a 762baf0 6589e60 762baf0 6589e60 b31f6f5 6589e60 172e154 6589e60 172e154 6589e60 172e154 6589e60 2870c2d 172e154 6589e60 819a20e 2f1a9ee 819a20e 2f1a9ee 2870c2d 2f1a9ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
# cell 1
from typing import Annotated
from langchain_experimental.tools import PythonREPLTool, PythonAstREPLTool
import pandas as pd
import statsmodels as sm
import os
# df = pd.read_csv("HOUST.csv")
df = pd.read_csv("USSTHPI.csv")
python_repl_tool = PythonAstREPLTool(locals={"df": df})
# cell 2
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate
import functools
import operator
from typing import Sequence, TypedDict
system_prompt = """You are working with a pandas dataframe in Python. The name of the dataframe is `df`.
It is important to understand the attributes of the dataframe before working with it. This is the result of running `df.head().to_markdown()`
<df>
{dhead}
</df>
You are not meant to use only these rows to answer questions - they are meant as a way of telling you about the shape and schema of the dataframe.
You also do not have use only the information here to answer questions - you can run intermediate queries to do exporatory data analysis to give you more information as needed. """
system_prompt = system_prompt.format(dhead=df.head().to_markdown())
# The agent state is the input to each node in the graph
class AgentState(TypedDict):
# The annotation tells the graph that new messages will always be added to the current states
messages: Annotated[Sequence[BaseMessage], operator.add]
# The 'next' field indicates where to route to next
next: str
# part of the problem might be that I'm passing a PromptTemplate object for the system_prompt here
# not everything needs to be an openai tools agent
def create_agent(llm: ChatOpenAI, tools: list, task: str):
# Each worker node will be given a name and some tools.
prompt = ChatPromptTemplate.from_messages(
[
( "system", system_prompt, ), # using a global system_prompt
HumanMessage(content=task),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
agent = create_openai_tools_agent(llm, tools, prompt)
# for debugging
# executor = AgentExecutor(agent=agent, tools=tools, verbose=True, return_intermediate_steps=True)
executor = AgentExecutor(agent=agent, tools=tools)
return executor
# AIMessage will have all kinds of metadata, so treat it all as HumanMessage I suppose?
def agent_node(state: AgentState, agent, name):
result = agent.invoke(state)
return {"messages": [HumanMessage(content=result["output"], name=name)]}
# return {"messages": [result]}
# I need to write the message to state here? or is that handled automatically?
def chain_node(state: AgentState, chain, name):
result = chain.invoke(input={"detail": "medium", "messages": state["messages"]})
return {"messages": [HumanMessage(content=result.content, name=name)]}
# cell 3
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
llm = ChatOpenAI(model="gpt-4o-mini-2024-07-18", temperature=0, api_key=OPENAI_API_KEY)
llm_big = ChatOpenAI(model="gpt-4o", temperature=0, api_key=OPENAI_API_KEY)
eda_task = """Using the data in the dataframe `df` and the package statsmodels, first run an augmented dickey fuller test on the data.
Using matplotlib plot the time series, display it and save it to 'plot.png'.
Next use the statsmodel package to generate an ACF plot with zero flag set to False, display it and save it to 'acf.png'.
Then use the statsmodel package to generate a PACF plot with zero flag set to False, display it and save it to 'pacf.png'"""
eda_agent = create_agent(llm, [python_repl_tool], task=eda_task,)
eda_node = functools.partial(agent_node, agent=eda_agent, name="EDA")
difference_task = """Using the data in the dataframe `df` determine whether a log transformation is appropriate.
If a log transformation is appropriate generate a new column for the log of the series and use this data for analysis.
Then determine whether a linear difference is needed and if needed generate a new column for the differenced data.
If the data was differenced use the differenced data for analysis."""
diff_agent = create_agent(llm, [python_repl_tool], task=difference_task, )
diff_node = functools.partial(agent_node, agent=diff_agent, name="difference")
plot_template = ChatPromptTemplate.from_messages(
messages=[
SystemMessage(content="""Determine whether this time series is stationary or needs to be differenced?
Consider the results of the ADF test along with the plot of the time series, the ACF plot and the PACF plot."""),
MessagesPlaceholder(variable_name="messages"),
HumanMessagePromptTemplate.from_template(
template=[{"type": "image_url", "image_url": {"path": "plot.png"}},
{"type": "image_url", "image_url": {"path": "acf.png"}},
{"type": "image_url", "image_url": {"path": "pacf.png"}}]),
]
)
plot_chain = plot_template | llm_big
plot_node = functools.partial(chain_node, chain=plot_chain, name="PlotAnalysis")
def router(state):
router_template = ChatPromptTemplate.from_messages(
messages=[
MessagesPlaceholder(variable_name="messages"),
HumanMessage("""If the time series is stationary, return true if it is not stationary return false.
Just return true or false, nothing else.""")
]
)
router_chain = router_template | llm
response = router_chain.invoke({"messages": state["messages"]})
if response.content=="true":
return "ARIMA"
else:
return "Difference"
arima_task = """Using the data in the dataframe `df` and the package statsmodels.
Estimate an ARIMA model with the appropriate AR and MA terms.
Then display the model results.
Finally generate an autocorrelation and partial autocorrelation plot of the model residuals with zero flag set to False, display it and save it as 'resid_acf.png'"""
arima_agent = create_agent(llm, [python_repl_tool], task=arima_task,)
arima_node = functools.partial(agent_node, agent=arima_agent, name="ARIMA")
from langgraph.graph import END, StateGraph, START
# add a chain to the node to analyze the ACF plot?
workflow = StateGraph(AgentState)
workflow.add_node("EDA", eda_node)
workflow.add_node("PlotAnalysis", plot_node)
workflow.add_node("Difference", diff_node)
workflow.add_node("ARIMA", arima_node)
# conditional_edge to refit and the loop refit with resid?
workflow.add_edge(START, "EDA")
workflow.add_edge("EDA", END)
workflow.add_conditional_edges("PlotAnalysis", router)
workflow.add_edge("Difference", "EDA")
workflow.add_edge("ARIMA", END)
graph = workflow.compile()
# can I parse this output?
def gradio_interface(input_text):
# input_data = {"messages": [HumanMessage(content="Run the analysis")]}
resp = graph.invoke({"messages": [HumanMessage(content="Run the analysis")]}) # debug=True
return resp
dropdown = gr.Dropdown(
choices=["Option 1", "Option 2", "Option 3"],
label="Choose an option"
)
demo = gr.Interface(fn=gradio_interface, inputs=dropdown, outputs="text")
demo.launch() |