File size: 25,224 Bytes
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "5" # these are only used if developping locally
import gradio as gr
import torch
import torchaudio
from data.tokenizer import (
    AudioTokenizer,
    TextTokenizer,
)
from models import voicecraft
import io
import numpy as np
import random
import spaces


whisper_model, voicecraft_model = None, None

@spaces.GPU(duration=20)
def seed_everything(seed):
    if seed != -1:
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True

@spaces.GPU(duration=120)
def load_models(whisper_model_choice, voicecraft_model_choice):
    global whisper_model, voicecraft_model

    if whisper_model_choice is not None:
        import whisper
        from whisper.tokenizer import get_tokenizer
        whisper_model = {
            "model": whisper.load_model(whisper_model_choice),
            "tokenizer": get_tokenizer(multilingual=False)
        }


    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    voicecraft_name = f"{voicecraft_model_choice}.pth"
    ckpt_fn = f"./pretrained_models/{voicecraft_name}"
    encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th"
    if not os.path.exists(ckpt_fn):
        os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true")
        os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}")
    if not os.path.exists(encodec_fn):
        os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th")
        os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th")

    ckpt = torch.load(ckpt_fn, map_location="cpu")
    model = voicecraft.VoiceCraft(ckpt["config"])
    model.load_state_dict(ckpt["model"])
    model.to(device)
    model.eval()
    voicecraft_model = {
        "ckpt": ckpt,
        "model": model,
        "text_tokenizer": TextTokenizer(backend="espeak"),
        "audio_tokenizer": AudioTokenizer(signature=encodec_fn)
    }

    return gr.Accordion()

@spaces.GPU(duration=60)
def transcribe(seed, audio_path):
    if whisper_model is None:
        raise gr.Error("Whisper model not loaded")
    seed_everything(seed)
    
    number_tokens = [
        i
        for i in range(whisper_model["tokenizer"].eot)
        if all(c in "0123456789" for c in whisper_model["tokenizer"].decode([i]).removeprefix(" "))
    ]
    result = whisper_model["model"].transcribe(audio_path, suppress_tokens=[-1] + number_tokens, word_timestamps=True)
    words = [word_info for segment in result["segments"] for word_info in segment["words"]]
    
    transcript = result["text"]
    transcript_with_start_time = " ".join([f"{word['start']} {word['word']}" for word in words])
    transcript_with_end_time = " ".join([f"{word['word']} {word['end']}" for word in words])

    choices = [f"{word['start']} {word['word']} {word['end']}" for word in words]

    return [
        transcript, transcript_with_start_time, transcript_with_end_time,
        gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # prompt_to_word
        gr.Dropdown(value=choices[0], choices=choices, interactive=True), # edit_from_word
        gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # edit_to_word
        words
    ]


def get_output_audio(audio_tensors, codec_audio_sr):
    result = torch.cat(audio_tensors, 1)
    buffer = io.BytesIO()
    torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
    buffer.seek(0)
    return buffer.read()

@spaces.GPU(duration=90)
def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature,
        stop_repetition, sample_batch_size, kvcache, silence_tokens,
        audio_path, word_info, transcript, smart_transcript,
        mode, prompt_end_time, edit_start_time, edit_end_time,
        split_text, selected_sentence, previous_audio_tensors):
    if voicecraft_model is None:
        raise gr.Error("VoiceCraft model not loaded")
    if smart_transcript and (word_info is None):
        raise gr.Error("Can't use smart transcript: whisper transcript not found")

    seed_everything(seed)
    if mode == "Long TTS":
        if split_text == "Newline":
            sentences = transcript.split('\n')
        else:
            from nltk.tokenize import sent_tokenize
            sentences = sent_tokenize(transcript.replace("\n", " "))
    elif mode == "Rerun":
        colon_position = selected_sentence.find(':')
        selected_sentence_idx = int(selected_sentence[:colon_position])
        sentences = [selected_sentence[colon_position + 1:]]
    else:
        sentences = [transcript.replace("\n", " ")]

    device = "cuda" if torch.cuda.is_available() else "cpu"
    info = torchaudio.info(audio_path)
    audio_dur = info.num_frames / info.sample_rate

    audio_tensors = []
    inference_transcript = ""
    for sentence in sentences:
        decode_config = {"top_k": top_k, "top_p": top_p, "temperature": temperature, "stop_repetition": stop_repetition,
                         "kvcache": kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr,
                         "silence_tokens": silence_tokens, "sample_batch_size": sample_batch_size}
        if mode != "Edit":
            from inference_tts_scale import inference_one_sample

            if smart_transcript:                
                target_transcript = ""
                for word in word_info:
                    if word["end"] < prompt_end_time:
                        target_transcript += word["word"]
                    elif (word["start"] + word["end"]) / 2 < prompt_end_time:
                        # include part of the word it it's big, but adjust prompt_end_time
                        target_transcript += word["word"]
                        prompt_end_time = word["end"]
                        break
                    else:
                        break
                target_transcript += f" {sentence}"
            else:
                target_transcript = sentence

            inference_transcript += target_transcript + "\n"

            prompt_end_frame = int(min(audio_dur, prompt_end_time) * info.sample_rate)
            _, gen_audio = inference_one_sample(voicecraft_model["model"],
                                                voicecraft_model["ckpt"]["config"],
                                                voicecraft_model["ckpt"]["phn2num"],
                                                voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
                                                audio_path, target_transcript, device, decode_config,
                                                prompt_end_frame)
        else:
            from inference_speech_editing_scale import inference_one_sample

            if smart_transcript:
                target_transcript = ""
                for word in word_info:
                    if word["start"] < edit_start_time:
                        target_transcript += word["word"]
                    else:
                        break
                target_transcript += f" {sentence}"
                for word in word_info:
                    if word["end"] > edit_end_time:
                        target_transcript += word["word"]
            else:
                target_transcript = sentence

            inference_transcript += target_transcript + "\n"

            morphed_span = (max(edit_start_time - left_margin, 1 / codec_sr), min(edit_end_time + right_margin, audio_dur))
            mask_interval = [[round(morphed_span[0]*codec_sr), round(morphed_span[1]*codec_sr)]]
            mask_interval = torch.LongTensor(mask_interval)
            
            _, gen_audio = inference_one_sample(voicecraft_model["model"],
                                                voicecraft_model["ckpt"]["config"],
                                                voicecraft_model["ckpt"]["phn2num"],
                                                voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
                                                audio_path, target_transcript, mask_interval, device, decode_config)
        gen_audio = gen_audio[0].cpu()
        audio_tensors.append(gen_audio)

    if mode != "Rerun":
        output_audio = get_output_audio(audio_tensors, codec_audio_sr)
        sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)]
        component = gr.Dropdown(choices=sentences, value=sentences[0])
        return output_audio, inference_transcript, component, audio_tensors
    else:
        previous_audio_tensors[selected_sentence_idx] = audio_tensors[0]
        output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr)
        sentence_audio = get_output_audio(audio_tensors, codec_audio_sr)
        return output_audio, inference_transcript, sentence_audio, previous_audio_tensors
    
    
def update_input_audio(audio_path):
    if audio_path is None:
        return 0, 0, 0
    
    info = torchaudio.info(audio_path)
    max_time = round(info.num_frames / info.sample_rate, 2)
    return [
        gr.Slider(maximum=max_time, value=max_time),
        gr.Slider(maximum=max_time, value=0),
        gr.Slider(maximum=max_time, value=max_time),
    ]

    
def change_mode(mode):
    tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor
    return [
        gr.Group(visible=mode != "Edit"),
        gr.Group(visible=mode == "Edit"),
        gr.Radio(visible=mode == "Edit"),
        gr.Radio(visible=mode == "Long TTS"),
        gr.Group(visible=mode == "Long TTS"),
    ]


def load_sentence(selected_sentence, codec_audio_sr, audio_tensors):
    if selected_sentence is None:
        return None
    colon_position = selected_sentence.find(':')
    selected_sentence_idx = int(selected_sentence[:colon_position])
    return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr)


def update_bound_word(is_first_word, selected_word, edit_word_mode):
    if selected_word is None:
        return None

    word_start_time = float(selected_word.split(' ')[0])
    word_end_time = float(selected_word.split(' ')[-1])
    if edit_word_mode == "Replace half":
        bound_time = (word_start_time + word_end_time) / 2
    elif is_first_word:
        bound_time = word_start_time
    else:
        bound_time = word_end_time

    return bound_time


def update_bound_words(from_selected_word, to_selected_word, edit_word_mode):
    return [
        update_bound_word(True, from_selected_word, edit_word_mode),
        update_bound_word(False, to_selected_word, edit_word_mode),
    ]


smart_transcript_info = """
If enabled, the target transcript will be constructed for you:</br>
 - In TTS and Long TTS mode just write the text you want to synthesize.</br>
 - In Edit mode just write the text to replace selected editing segment.</br>
If disabled, you should write the target transcript yourself:</br>
 - In TTS mode write prompt transcript followed by generation transcript.</br>
 - In Long TTS select split by newline (<b>SENTENCE SPLIT WON'T WORK</b>) and start each line with a prompt transcript.</br>
 - In Edit mode write full prompt</br>
"""

demo_original_transcript = " But when I had approached so near to them, the common object, which the sense deceives, lost not by distance any of its marks."

demo_text = {
    "TTS": {
        "smart": "I cannot believe that the same model can also do text to speech synthesis as well!",
        "regular": "But when I had approached so near to them, the common I cannot believe that the same model can also do text to speech synthesis as well!"
    },
    "Edit": {
        "smart": "saw the mirage of the lake in the distance,",
        "regular": "But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks,"
    },
    "Long TTS": {
        "smart": "You can run generation on a big text!\n"
                 "Just write it line-by-line. Or sentence-by-sentence.\n"
                 "If some sentences sound odd, just rerun generation on them, no need to generate the whole text again!",
        "regular": "But when I had approached so near to them, the common You can run generation on a big text!\n"
                   "But when I had approached so near to them, the common Just write it line-by-line. Or sentence-by-sentence.\n"
                   "But when I had approached so near to them, the common If some sentences sound odd, just rerun generation on them, no need to generate the whole text again!"
    }
}

all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()}

demo_words = [
    "0.03  but 0.18",
    "0.18  when 0.32",
    "0.32  i 0.48",
    "0.48  had 0.64",
    "0.64  approached 1.19",
    "1.22  so 1.58",
    "1.58  near 1.91",
    "1.91  to 2.07",
    "2.07  them 2.42",
    "2.53  the 2.61",
    "2.61  common 3.01",
    "3.05  object 3.62",
    "3.68  which 3.93",
    "3.93  the 4.02",
    "4.02  sense 4.34",
    "4.34  deceives 4.97",
    "5.04  lost 5.54",
    "5.54  not 6.00",
    "6.00  by 6.14",
    "6.14  distance 6.67",
    "6.79  any 7.05",
    "7.05  of 7.18",
    "7.18  its 7.34",
    "7.34  marks 7.87"
]

demo_word_info = [
    {"word": "but", "start": 0.03, "end": 0.18},
    {"word": "when", "start": 0.18, "end": 0.32},
    {"word": "i", "start": 0.32, "end": 0.48},
    {"word": "had", "start": 0.48, "end": 0.64},
    {"word": "approached", "start": 0.64, "end": 1.19},
    {"word": "so", "start": 1.22, "end": 1.58},
    {"word": "near", "start": 1.58, "end": 1.91},
    {"word": "to", "start": 1.91, "end": 2.07},
    {"word": "them", "start": 2.07, "end": 2.42},
    {"word": "the", "start": 2.53, "end": 2.61},
    {"word": "common", "start": 2.61, "end": 3.01},
    {"word": "object", "start": 3.05, "end": 3.62},
    {"word": "which", "start": 3.68, "end": 3.93},
    {"word": "the", "start": 3.93, "end": 4.02},
    {"word": "sense", "start": 4.02, "end": 4.34},
    {"word": "deceives", "start": 4.34, "end": 4.97},
    {"word": "lost", "start": 5.04, "end": 5.54},
    {"word": "not", "start": 5.54, "end": 6.0},
    {"word": "by", "start": 6.0, "end": 6.14},
    {"word": "distance", "start": 6.14, "end": 6.67},
    {"word": "any", "start": 6.79, "end": 7.05},
    {"word": "of", "start": 7.05, "end": 7.18},
    {"word": "its", "start": 7.18, "end": 7.34},
    {"word": "marks", "start": 7.34, "end": 7.87}
]


def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word):
    if transcript not in all_demo_texts:
        return transcript, edit_from_word, edit_to_word
    
    replace_half = edit_word_mode == "Replace half"
    change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3]
    change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12]
    demo_edit_from_word_value = demo_words[2] if replace_half else demo_words[3]
    demo_edit_to_word_value = demo_words[12] if replace_half else demo_words[11]
    return [
        demo_text[mode]["smart" if smart_transcript else "regular"],
        demo_edit_from_word_value if change_edit_from_word else edit_from_word,
        demo_edit_to_word_value if change_edit_to_word else edit_to_word,
    ]


with gr.Blocks() as app:
    with gr.Row():
        with gr.Column(scale=2):
            load_models_btn = gr.Button(value="Load models")
        with gr.Column(scale=5):
            with gr.Accordion("Select models", open=False) as models_selector:
                with gr.Row():
                    voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"])
                    whisper_model_choice = gr.Radio(label="Whisper model", value="base.en",
                                                    choices=[None, "tiny.en", "base.en", "small.en", "medium.en", "large"])

    with gr.Row():
        with gr.Column(scale=2):
            input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath")
            with gr.Group():
                original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, interactive=False,
                                                 info="Use whisper model to get the transcript. Fix it if necessary.")
                with gr.Accordion("Word start time", open=False):
                    transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word")
                with gr.Accordion("Word end time", open=False):
                    transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word")

                transcribe_btn = gr.Button(value="Transcribe")
            
        with gr.Column(scale=3):
            with gr.Group():
                transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"])
                with gr.Row():
                    smart_transcript = gr.Checkbox(label="Smart transcript", value=True)
                    with gr.Accordion(label="?", open=False):
                        info = gr.Markdown(value=smart_transcript_info)

                with gr.Row():
                    mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS")
                    split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline",
                                          info="Split text into parts and run TTS for each part.", visible=False)
                    edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half",
                                              info="What to do with first and last word", visible=False)
                
                with gr.Group() as tts_mode_controls:
                    prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True)
                    prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.01, value=3.01)

                with gr.Group(visible=False) as edit_mode_controls:
                    with gr.Row():
                        edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True)
                        edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True)
                    with gr.Row():
                        edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.01, value=0.35)
                        edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.01, value=3.75)

                run_btn = gr.Button(value="Run")

        with gr.Column(scale=2):
            output_audio = gr.Audio(label="Output Audio")
            with gr.Accordion("Inference transcript", open=False):
                inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False,
                                                  info="Inference was performed on this transcript.")
            with gr.Group(visible=False) as long_tts_sentence_editor:
                sentence_selector = gr.Dropdown(label="Sentence", value=None,
                                                info="Select sentence you want to regenerate")
                sentence_audio = gr.Audio(label="Sentence Audio", scale=2)
                rerun_btn = gr.Button(value="Rerun")

    with gr.Row():
        with gr.Accordion("VoiceCraft config", open=False):
            seed = gr.Number(label="seed", value=-1, precision=0)
            left_margin = gr.Number(label="left_margin", value=0.08)
            right_margin = gr.Number(label="right_margin", value=0.08)
            codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000)
            codec_sr = gr.Number(label="codec_sr", value=50)
            top_k = gr.Number(label="top_k", value=0)
            top_p = gr.Number(label="top_p", value=0.8)
            temperature = gr.Number(label="temperature", value=1)
            stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3], value=3,
                                       info="if there are long silence in the generated audio, reduce the stop_repetition to 3, 2 or even 1, -1 = disabled")
            sample_batch_size = gr.Number(label="sample_batch_size", value=4, precision=0,
                                          info="generate this many samples and choose the shortest one")
            kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
                                info="set to 0 to use less VRAM, but with slower inference")
            silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]")

    
    audio_tensors = gr.State()
    word_info = gr.State(value=demo_word_info)

    
    mode.change(fn=update_demo,
                inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
                outputs=[transcript, edit_from_word, edit_to_word])
    edit_word_mode.change(fn=update_demo,
                          inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
                          outputs=[transcript, edit_from_word, edit_to_word])
    smart_transcript.change(fn=update_demo,
                            inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
                            outputs=[transcript, edit_from_word, edit_to_word])
    
    load_models_btn.click(fn=load_models,
                          inputs=[whisper_model_choice, voicecraft_model_choice],
                          outputs=[models_selector])
    
    input_audio.upload(fn=update_input_audio,
                       inputs=[input_audio],
                       outputs=[prompt_end_time, edit_start_time, edit_end_time])
    transcribe_btn.click(fn=transcribe,
                         inputs=[seed, input_audio],
                         outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time,
                                  prompt_to_word, edit_from_word, edit_to_word, word_info])

    mode.change(fn=change_mode,
                inputs=[mode],
                outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor])

    run_btn.click(fn=run,
                  inputs=[
                      seed, left_margin, right_margin,
                      codec_audio_sr, codec_sr,
                      top_k, top_p, temperature,
                      stop_repetition, sample_batch_size,
                      kvcache, silence_tokens,
                      input_audio, word_info, transcript, smart_transcript,
                      mode, prompt_end_time, edit_start_time, edit_end_time,
                      split_text, sentence_selector, audio_tensors
                  ],
                  outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors])
    
    sentence_selector.change(fn=load_sentence,
                             inputs=[sentence_selector, codec_audio_sr, audio_tensors],
                             outputs=[sentence_audio])
    rerun_btn.click(fn=run,
                    inputs=[
                        seed, left_margin, right_margin,
                        codec_audio_sr, codec_sr,
                        top_k, top_p, temperature,
                        stop_repetition, sample_batch_size,
                        kvcache, silence_tokens,
                        input_audio, word_info, transcript, smart_transcript,
                        gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time,
                        split_text, sentence_selector, audio_tensors
                    ],
                    outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors])
    
    prompt_to_word.change(fn=update_bound_word,
                          inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")],
                          outputs=[prompt_end_time])
    edit_from_word.change(fn=update_bound_word,
                          inputs=[gr.State(True), edit_from_word, edit_word_mode],
                          outputs=[edit_start_time])
    edit_to_word.change(fn=update_bound_word,
                        inputs=[gr.State(False), edit_to_word, edit_word_mode],
                        outputs=[edit_end_time])
    edit_word_mode.change(fn=update_bound_words,
                          inputs=[edit_from_word, edit_to_word, edit_word_mode],
                          outputs=[edit_start_time, edit_end_time])


if __name__ == "__main__":
    app.launch()