Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,173 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
object_classes_list = []
|
5 |
object_bboxes_list = []
|
6 |
|
7 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def clear_arrays():
|
9 |
object_classes_list.clear()
|
10 |
object_bboxes_list.clear()
|
11 |
-
return [], gr.update(value="", interactive=True) # Clear
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
with gr.Blocks() as demo:
|
14 |
-
with gr.Group():
|
15 |
with gr.Row():
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
container=False
|
23 |
)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
refresh_button.click(
|
34 |
-
fn=clear_arrays,
|
35 |
inputs=None,
|
36 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from diffusers import ControlNetModel, UniPCMultistepScheduler
|
6 |
+
from hico_pipeline import StableDiffusionControlNetMultiLayoutPipeline
|
7 |
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Initialize model
|
11 |
+
controlnet = ControlNetModel.from_pretrained("qihoo360/HiCo_T2I", torch_dtype=torch.float16)
|
12 |
+
pipe = StableDiffusionControlNetMultiLayoutPipeline.from_pretrained(
|
13 |
+
"krnl/realisticVisionV51_v51VAE", controlnet=[controlnet], torch_dtype=torch.float16
|
14 |
+
)
|
15 |
+
pipe = pipe.to(device)
|
16 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
17 |
+
|
18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
|
20 |
+
# Store objects
|
21 |
object_classes_list = []
|
22 |
object_bboxes_list = []
|
23 |
|
24 |
+
# Function to add or update the prompt in the list
|
25 |
+
def submit_prompt(prompt):
|
26 |
+
if object_classes_list:
|
27 |
+
object_classes_list[0] = prompt # Overwrite the first element if it exists
|
28 |
+
else:
|
29 |
+
object_classes_list.insert(0, prompt) # Add to the beginning if the list is empty
|
30 |
+
|
31 |
+
if not object_bboxes_list:
|
32 |
+
object_bboxes_list.insert(0, "0,0,512,512") # Add the default bounding box if the list is empty
|
33 |
+
|
34 |
+
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)]
|
35 |
+
return combined_list, gr.update(interactive=False) # Make the prompt input non-editable
|
36 |
+
|
37 |
+
# Function to add a new object with validation
|
38 |
+
def add_object(object_class, bbox):
|
39 |
+
try:
|
40 |
+
x1, y1, x2, y2 = map(int, bbox.split(","))
|
41 |
+
if x2 < x1 or y2 < y1:
|
42 |
+
return "Error: x2 cannot be less than x1 and y2 cannot be less than y1.", []
|
43 |
+
if x1 < 0 or y1 < 0 or x2 > 512 or y2 > 512:
|
44 |
+
return "Error: Coordinates must be between 0 and 512.", []
|
45 |
+
object_classes_list.append(object_class)
|
46 |
+
object_bboxes_list.append(bbox)
|
47 |
+
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)]
|
48 |
+
return combined_list
|
49 |
+
except ValueError:
|
50 |
+
return "Error: Invalid input format. Use x1,y1,x2,y2.", []
|
51 |
+
|
52 |
+
# Function to generate images based on added objects
|
53 |
+
def generate_image(prompt, guidance_scale, num_inference_steps, randomize_seed, seed):
|
54 |
+
img_width, img_height = 512, 512
|
55 |
+
r_image = np.zeros((img_height, img_width, 3), dtype=np.uint8)
|
56 |
+
list_cond_image = []
|
57 |
+
|
58 |
+
for bbox in object_bboxes_list:
|
59 |
+
x1, y1, x2, y2 = map(int, bbox.split(","))
|
60 |
+
cond_image = np.zeros_like(r_image, dtype=np.uint8)
|
61 |
+
cond_image[y1:y2, x1:x2] = 255
|
62 |
+
list_cond_image.append(Image.fromarray(cond_image).convert('RGB'))
|
63 |
+
|
64 |
+
if randomize_seed or seed is None:
|
65 |
+
seed = np.random.randint(0, MAX_SEED)
|
66 |
+
|
67 |
+
generator = torch.manual_seed(seed)
|
68 |
+
|
69 |
+
image = pipe(
|
70 |
+
prompt=prompt,
|
71 |
+
layo_prompt=object_classes_list,
|
72 |
+
guess_mode=False,
|
73 |
+
guidance_scale=guidance_scale,
|
74 |
+
num_inference_steps=num_inference_steps,
|
75 |
+
image=list_cond_image,
|
76 |
+
fuse_type="avg",
|
77 |
+
width=512,
|
78 |
+
height=512
|
79 |
+
).images[0]
|
80 |
+
|
81 |
+
return image, seed
|
82 |
+
|
83 |
+
# Function to clear all arrays and reset the UI
|
84 |
def clear_arrays():
|
85 |
object_classes_list.clear()
|
86 |
object_bboxes_list.clear()
|
87 |
+
return [], gr.update(value="", interactive=True) # Clear the objects and reset the prompt
|
88 |
+
|
89 |
+
# Gradio UI with custom CSS for orange buttons
|
90 |
+
css = """
|
91 |
+
button {
|
92 |
+
background-color: orange !important;
|
93 |
+
color: white !important;
|
94 |
+
border: none !important;
|
95 |
+
font-weight: bold;
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(css=css) as demo:
|
100 |
+
gr.Markdown("# Text-to-Image Generator with Object Addition")
|
101 |
+
|
102 |
+
# Put prompt and submit button in the same row and adjust sizes
|
103 |
+
with gr.Row():
|
104 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here").style(width=500)
|
105 |
+
submit_button = gr.Button("Submit Prompt").style(width=100)
|
106 |
+
|
107 |
+
# Always visible DataFrame
|
108 |
+
objects_display = gr.Dataframe(
|
109 |
+
headers=["Object Class", "Bounding Box"],
|
110 |
+
value=[]
|
111 |
+
)
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
object_class_input = gr.Textbox(label="Object Class", placeholder="Enter object class (e.g., Object_1)")
|
115 |
+
bbox_input = gr.Textbox(label="Bounding Box (x1,y1,x2,y2)", placeholder="Enter bounding box coordinates")
|
116 |
+
|
117 |
+
add_button = gr.Button("Add Object")
|
118 |
+
refresh_button = gr.Button("Refresh") # New Refresh button
|
119 |
+
|
120 |
+
# Advanced settings in a collapsible accordion
|
121 |
+
with gr.Accordion("Advanced Settings", open=False):
|
122 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
123 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
124 |
|
|
|
|
|
125 |
with gr.Row():
|
126 |
+
guidance_scale = gr.Slider(
|
127 |
+
label="Guidance scale",
|
128 |
+
minimum=0.0,
|
129 |
+
maximum=10.0,
|
130 |
+
step=0.1,
|
131 |
+
value=7.5
|
|
|
132 |
)
|
133 |
+
num_inference_steps = gr.Slider(
|
134 |
+
label="Number of inference steps",
|
135 |
+
minimum=1,
|
136 |
+
maximum=50,
|
137 |
+
step=1,
|
138 |
+
value=50
|
139 |
+
)
|
140 |
+
|
141 |
+
generate_button = gr.Button("Generate Image")
|
142 |
+
result = gr.Image(label="Generated Image")
|
143 |
|
144 |
+
# Submit the prompt and update the display
|
145 |
+
submit_button.click(
|
146 |
+
fn=submit_prompt,
|
147 |
+
inputs=prompt,
|
148 |
+
outputs=[objects_display, prompt]
|
149 |
+
)
|
150 |
|
151 |
+
# Add object and update display
|
152 |
+
add_button.click(
|
153 |
+
fn=add_object,
|
154 |
+
inputs=[object_class_input, bbox_input],
|
155 |
+
outputs=[objects_display]
|
156 |
+
)
|
157 |
|
158 |
+
# Refresh button to clear arrays and reset inputs
|
159 |
refresh_button.click(
|
160 |
+
fn=clear_arrays,
|
161 |
inputs=None,
|
162 |
+
outputs=[objects_display, prompt]
|
163 |
+
)
|
164 |
+
|
165 |
+
# Generate image based on added objects
|
166 |
+
generate_button.click(
|
167 |
+
fn=generate_image,
|
168 |
+
inputs=[prompt, guidance_scale, num_inference_steps, randomize_seed, seed],
|
169 |
+
outputs=[result, seed]
|
170 |
)
|
171 |
|
172 |
+
if __name__ == "__main__":
|
173 |
+
demo.launch()
|