boomcheng commited on
Commit
722243d
·
verified ·
1 Parent(s): ab89d18

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -62
app.py CHANGED
@@ -1,56 +1,78 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
 
 
 
18
  pipe = pipe.to(device)
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
 
 
25
  def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
  ):
36
- if randomize_seed:
 
 
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
 
 
41
  image = pipe(
42
  prompt=prompt,
43
- negative_prompt=negative_prompt,
 
44
  guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
 
49
  ).images[0]
50
 
51
  return image, seed
52
 
53
-
54
  examples = [
55
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
@@ -64,6 +86,7 @@ css = """
64
  }
65
  """
66
 
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
  gr.Markdown(" # Text-to-Image Gradio Template")
@@ -76,19 +99,11 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
  run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -99,30 +114,13 @@ with gr.Blocks(css=css) as demo:
99
 
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,22 +128,19 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
  inputs=[
141
  prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
  guidance_scale,
148
  num_inference_steps,
 
 
149
  ],
150
  outputs=[result, seed],
151
  )
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ from PIL import Image
 
 
5
  import torch
6
+ from diffusers import ControlNetModel, UniPCMultistepScheduler
7
+ from hico_pipeline import StableDiffusionControlNetMultiLayoutPipeline
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
10
 
11
+ # Initialize model
12
+ controlnet = ControlNetModel.from_pretrained("qihoo360/HiCo_T2I", torch_dtype=torch.float16)
13
+ pipe = StableDiffusionControlNetMultiLayoutPipeline.from_pretrained(
14
+ "krnl/realisticVisionV51_v51VAE", controlnet=[controlnet], torch_dtype=torch.float16
15
+ )
16
  pipe = pipe.to(device)
17
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
 
20
 
21
+ # Function for generating dummy bounding box and label data
22
+ def generate_dummy_data():
23
+ # Generate random image size
24
+ img_width, img_height = 512, 512
25
+ r_image = np.zeros((img_height, img_width, 3), dtype=np.uint8)
26
+
27
+ # Generate random bounding boxes and labels
28
+ num_objects = random.randint(1, 5)
29
+ r_obj_bbox = []
30
+ r_obj_class = ["Object"]
31
+ list_cond_image = []
32
+
33
+ for _ in range(num_objects):
34
+ x1, y1 = random.randint(0, img_width // 2), random.randint(0, img_height // 2)
35
+ x2, y2 = random.randint(x1, img_width), random.randint(y1, img_height)
36
+ r_obj_bbox.append([x1, y1, x2, y2])
37
+ cond_image = np.zeros_like(r_image, dtype=np.uint8)
38
+ cond_image[y1:y2, x1:x2] = 255
39
+ list_cond_image.append(cond_image)
40
+
41
+ r_obj_bbox.insert(0, [0, 0, img_width, img_height]) # Add background
42
+ r_obj_class.insert(0, "Background")
43
+ list_cond_image.insert(0, np.zeros_like(r_image, dtype=np.uint8)) # Add full background
44
+
45
+ obj_cond_image = np.stack(list_cond_image, axis=0)
46
+ list_cond_image_pil = [Image.fromarray(img).convert('RGB') for img in list_cond_image]
47
 
48
+ return r_obj_class, r_obj_bbox, list_cond_image_pil, obj_cond_image
49
+
50
+ # Inference function
51
  def infer(
52
+ prompt, guidance_scale, num_inference_steps, randomize_seed, seed=None
 
 
 
 
 
 
 
 
53
  ):
54
+ # Generate dummy data for demonstration
55
+ r_obj_class, r_obj_bbox, list_cond_image_pil, _ = generate_dummy_data()
56
+ if randomize_seed or seed is None:
57
  seed = random.randint(0, MAX_SEED)
58
 
59
+ generator = torch.manual_seed(seed)
60
 
61
+ # Run inference
62
  image = pipe(
63
  prompt=prompt,
64
+ layo_prompt=r_obj_class,
65
+ guess_mode=False,
66
  guidance_scale=guidance_scale,
67
  num_inference_steps=num_inference_steps,
68
+ image=list_cond_image_pil,
69
+ fuse_type="avg",
70
+ width=512,
71
+ height=512
72
  ).images[0]
73
 
74
  return image, seed
75
 
 
76
  examples = [
77
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
78
  "An astronaut riding a green horse",
 
86
  }
87
  """
88
 
89
+ # Gradio UI
90
  with gr.Blocks(css=css) as demo:
91
  with gr.Column(elem_id="col-container"):
92
  gr.Markdown(" # Text-to-Image Gradio Template")
 
99
  placeholder="Enter your prompt",
100
  container=False,
101
  )
 
102
  run_button = gr.Button("Run", scale=0, variant="primary")
103
 
104
  result = gr.Image(label="Result", show_label=False)
105
 
106
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
107
  seed = gr.Slider(
108
  label="Seed",
109
  minimum=0,
 
114
 
115
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  with gr.Row():
118
  guidance_scale = gr.Slider(
119
  label="Guidance scale",
120
  minimum=0.0,
121
  maximum=10.0,
122
  step=0.1,
123
+ value=7.5,
124
  )
125
 
126
  num_inference_steps = gr.Slider(
 
128
  minimum=1,
129
  maximum=50,
130
  step=1,
131
+ value=50,
132
  )
133
 
134
  gr.Examples(examples=examples, inputs=[prompt])
135
+
136
+ run_button.click(
137
  fn=infer,
138
  inputs=[
139
  prompt,
 
 
 
 
 
140
  guidance_scale,
141
  num_inference_steps,
142
+ randomize_seed,
143
+ seed,
144
  ],
145
  outputs=[result, seed],
146
  )