import gradio as gr from gradio_huggingfacehub_search import HuggingfaceHubSearch import requests processed_inputs = {} def process_inputs(model_id, q_method, email, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None): if oauth_token.token is None or profile.username is None: return "You must be logged in to use this service." if not model_id or not q_method or not email: return "All fields are required!" input_hash = hash((model_id, q_method, oauth_token.token, profile.username)) if input_hash in processed_inputs and processed_inputs[input_hash] == 200: return "This request has already been submitted successfully. Please do not submit the same request multiple times." url = "https://sdk.nexa4ai.com/task" data = { "repository_url": f"https://huggingface.co/{model_id}", "username": profile.username, "access_token": oauth_token.token, "email": email, "quantization_option": q_method, } response = requests.post(url, json=data) if response.status_code == 200: processed_inputs[input_hash] = 200 return "Your request has been submitted successfully. We will notify you by email once processing is complete. There is no need to submit the same request multiple times." else: processed_inputs[input_hash] = response.status_code return f"Failed to submit request: {response.text}" iface = gr.Interface( fn=process_inputs, inputs=[ HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ), gr.Dropdown( ["q2_K", "q3_K", "q3_K_S", "q3_K_M", "q3_K_L", "q4_0", "q4_1", "q4_K", "q4_K_S", "q4_K_M", "q5_0", "q5_1", "q5_K", "q5_K_S", "q5_K_M", "q6_K", "q8_0", "f16"], label="Quantization Option", info="GGML quantisation options", value="q4_0", filterable=False ), gr.Textbox(label="Email", placeholder="Enter your email here") ], outputs=gr.Markdown(label="output", value="Please enter the model URL, select a quantization method, and provide your email address.",), title="Create your own GGUF Quants, blazingly fast ⚡!", allow_flagging="never" ) theme = gr.themes.Base() with gr.Blocks(theme=theme) as demo: gr.Markdown("You must be logged in to use this service.") gr.LoginButton(min_width=250) iface.render() demo.launch(share=True)