import gradio as gr from gradio_huggingfacehub_search import HuggingfaceHubSearch import requests processed_inputs = {} def process_inputs(model_id, q_method, email, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: return "You must be logged in to use this service. if not model_id or not q_method or not email: return "All fields are required!" input_hash = hash((model_id, q_method, email, oauth_token.token)) if input_hash in processed_inputs and processed_inputs[input_hash] == 200: return "This request has already been submitted successfully. Please do not submit the same request multiple times." url = "https://sdk.nexa4ai.com/task" data = { "model_id": model_id, "q_method": q_method, "email": email, "oauth_token": oauth_token.token } response = requests.post(url, json=data) if response.status_code == 200: processed_inputs[input_hash] = 200 return "Your request has been submitted successfully. We will notify you by email once processing is complete. There is no need to submit the same request multiple times." else: processed_inputs[input_hash] = response.status_code return f"Failed to submit request: {response.text}" iface = gr.Interface( fn=process_inputs, inputs=[ HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ), gr.Dropdown( ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Quantization Method", info="GGML quantisation type", value="Q4_K_M", filterable=False ), gr.Textbox(label="Email", placeholder="Enter your email here") ], outputs=gr.Markdown(label="output", value="Please enter the model URL, select a quantization method, and provide your email address.",), title="Create your own GGUF Quants, blazingly fast ⚡!", allow_flagging="never" ) theme = gr.themes.Base() with gr.Blocks(theme=theme) as demo: gr.Markdown("You must be logged in to use this service.") gr.LoginButton(min_width=250) iface.render() demo.launch(share=True)