RVC_HF / infer /lib /train /utils.py
r3gm's picture
Upload 288 files
7bc29af
import argparse
import glob
import json
import logging
import os
import subprocess
import sys
import shutil
import numpy as np
import torch
from scipy.io.wavfile import read
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
##################
def go(model, bkey):
saved_state_dict = checkpoint_dict[bkey]
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items(): # 模型需要的shape
try:
new_state_dict[k] = saved_state_dict[k]
if saved_state_dict[k].shape != state_dict[k].shape:
logger.warn(
"shape-%s-mismatch. need: %s, get: %s",
k,
state_dict[k].shape,
saved_state_dict[k].shape,
) #
raise KeyError
except:
# logger.info(traceback.format_exc())
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
new_state_dict[k] = v # 模型自带的随机值
if hasattr(model, "module"):
model.module.load_state_dict(new_state_dict, strict=False)
else:
model.load_state_dict(new_state_dict, strict=False)
return model
go(combd, "combd")
model = go(sbd, "sbd")
#############
logger.info("Loaded model weights")
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
if (
optimizer is not None and load_opt == 1
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
# try:
optimizer.load_state_dict(checkpoint_dict["optimizer"])
# except:
# traceback.print_exc()
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
# def load_checkpoint(checkpoint_path, model, optimizer=None):
# assert os.path.isfile(checkpoint_path)
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
# iteration = checkpoint_dict['iteration']
# learning_rate = checkpoint_dict['learning_rate']
# if optimizer is not None:
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
# # print(1111)
# saved_state_dict = checkpoint_dict['model']
# # print(1111)
#
# if hasattr(model, 'module'):
# state_dict = model.module.state_dict()
# else:
# state_dict = model.state_dict()
# new_state_dict= {}
# for k, v in state_dict.items():
# try:
# new_state_dict[k] = saved_state_dict[k]
# except:
# logger.info("%s is not in the checkpoint" % k)
# new_state_dict[k] = v
# if hasattr(model, 'module'):
# model.module.load_state_dict(new_state_dict)
# else:
# model.load_state_dict(new_state_dict)
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
# checkpoint_path, iteration))
# return model, optimizer, learning_rate, iteration
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
saved_state_dict = checkpoint_dict["model"]
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items(): # 模型需要的shape
try:
new_state_dict[k] = saved_state_dict[k]
if saved_state_dict[k].shape != state_dict[k].shape:
logger.warn(
"shape-%s-mismatch|need-%s|get-%s",
k,
state_dict[k].shape,
saved_state_dict[k].shape,
) #
raise KeyError
except:
# logger.info(traceback.format_exc())
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
new_state_dict[k] = v # 模型自带的随机值
if hasattr(model, "module"):
model.module.load_state_dict(new_state_dict, strict=False)
else:
model.load_state_dict(new_state_dict, strict=False)
logger.info("Loaded model weights")
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
if (
optimizer is not None and load_opt == 1
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
# try:
optimizer.load_state_dict(checkpoint_dict["optimizer"])
# except:
# traceback.print_exc()
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info(
"Saving model and optimizer state at epoch {} to {}".format(
iteration, checkpoint_path
)
)
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(
{
"model": state_dict,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
},
checkpoint_path,
)
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
logger.info(
"Saving model and optimizer state at epoch {} to {}".format(
iteration, checkpoint_path
)
)
if hasattr(combd, "module"):
state_dict_combd = combd.module.state_dict()
else:
state_dict_combd = combd.state_dict()
if hasattr(sbd, "module"):
state_dict_sbd = sbd.module.state_dict()
else:
state_dict_sbd = sbd.state_dict()
torch.save(
{
"combd": state_dict_combd,
"sbd": state_dict_sbd,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
},
checkpoint_path,
)
def summarize(
writer,
global_step,
scalars={},
histograms={},
images={},
audios={},
audio_sampling_rate=22050,
):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats="HWC")
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
logger.debug(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
)
fig.colorbar(im, ax=ax)
xlabel = "Decoder timestep"
if info is not None:
xlabel += "\n\n" + info
plt.xlabel(xlabel)
plt.ylabel("Encoder timestep")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding="utf-8") as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
"""
todo:
结尾七人组:
保存频率、总epoch done
bs done
pretrainG、pretrainD done
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
if_latest done
模型:if_f0 done
采样率:自动选择config done
是否缓存数据集进GPU:if_cache_data_in_gpu done
-m:
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
-c不要了
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-se",
"--save_every_epoch",
type=int,
required=True,
help="checkpoint save frequency (epoch)",
)
parser.add_argument(
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
)
parser.add_argument(
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
)
parser.add_argument(
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
)
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
parser.add_argument(
"-bs", "--batch_size", type=int, required=True, help="batch size"
)
parser.add_argument(
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
) # -m
parser.add_argument(
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
)
parser.add_argument(
"-sw",
"--save_every_weights",
type=str,
default="0",
help="save the extracted model in weights directory when saving checkpoints",
)
parser.add_argument(
"-v", "--version", type=str, required=True, help="model version"
)
parser.add_argument(
"-f0",
"--if_f0",
type=int,
required=True,
help="use f0 as one of the inputs of the model, 1 or 0",
)
parser.add_argument(
"-l",
"--if_latest",
type=int,
required=True,
help="if only save the latest G/D pth file, 1 or 0",
)
parser.add_argument(
"-c",
"--if_cache_data_in_gpu",
type=int,
required=True,
help="if caching the dataset in GPU memory, 1 or 0",
)
args = parser.parse_args()
name = args.experiment_dir
experiment_dir = os.path.join("./logs", args.experiment_dir)
config_save_path = os.path.join(experiment_dir, "config.json")
with open(config_save_path, "r") as f:
config = json.load(f)
hparams = HParams(**config)
hparams.model_dir = hparams.experiment_dir = experiment_dir
hparams.save_every_epoch = args.save_every_epoch
hparams.name = name
hparams.total_epoch = args.total_epoch
hparams.pretrainG = args.pretrainG
hparams.pretrainD = args.pretrainD
hparams.version = args.version
hparams.gpus = args.gpus
hparams.train.batch_size = args.batch_size
hparams.sample_rate = args.sample_rate
hparams.if_f0 = args.if_f0
hparams.if_latest = args.if_latest
hparams.save_every_weights = args.save_every_weights
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn(
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
)
)
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn(
"git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]
)
)
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()