File size: 10,683 Bytes
1397f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import sys
import time
import torch
import logging

import numpy as np
import soundfile as sf
import librosa

now_dir = os.getcwd()
sys.path.append(now_dir)

from rvc.infer.pipeline import VC
from scipy.io import wavfile
from audio_upscaler import upscale
import noisereduce as nr
from rvc.lib.utils import load_audio
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rvc.configs.config import Config
from rvc.lib.utils import load_embedding

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)

config = Config()
hubert_model = None
tgt_sr = None
net_g = None
vc = None
cpt = None
version = None
n_spk = None


def load_hubert(embedder_model, embedder_model_custom):
    global hubert_model
    models, _, _ = load_embedding(embedder_model, embedder_model_custom)
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()


def remove_audio_noise(input_audio_path, reduction_strength=0.7):
    try:
        rate, data = wavfile.read(input_audio_path)
        reduced_noise = nr.reduce_noise(
            y=data,
            sr=rate,
            prop_decrease=reduction_strength,
        )
        return reduced_noise
    except Exception as error:
        print(f"Error cleaning audio: {error}")
        return None


def convert_audio_format(input_path, output_path, output_format):
    try:
        if output_format != "WAV":
            print(f"Converting audio to {output_format} format...")
            audio, sample_rate = librosa.load(input_path, sr=None)
            common_sample_rates = [
                8000,
                11025,
                12000,
                16000,
                22050,
                24000,
                32000,
                44100,
                48000,
            ]
            target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
            audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=target_sr)
            sf.write(output_path, audio, target_sr, format=output_format.lower())
        return output_path
    except Exception as error:
        print(f"Failed to convert audio to {output_format} format: {error}")


def voice_conversion(

    sid=0,

    input_audio_path=None,

    f0_up_key=None,

    f0_file=None,

    f0_method=None,

    file_index=None,

    index_rate=None,

    resample_sr=0,

    rms_mix_rate=None,

    protect=None,

    hop_length=None,

    output_path=None,

    split_audio=False,

    f0autotune=False,

    filter_radius=None,

    embedder_model=None,

    embedder_model_custom=None,

):
    global tgt_sr, net_g, vc, hubert_model, version

    f0_up_key = int(f0_up_key)
    try:
        audio = load_audio(input_audio_path, 16000)
        audio_max = np.abs(audio).max() / 0.95

        if audio_max > 1:
            audio /= audio_max

        if not hubert_model:
            load_hubert(embedder_model, embedder_model_custom)
        if_f0 = cpt.get("f0", 1)

        file_index = (
            file_index.strip(" ")
            .strip('"')
            .strip("\n")
            .strip('"')
            .strip(" ")
            .replace("trained", "added")
        )
        if tgt_sr != resample_sr >= 16000:
            tgt_sr = resample_sr
        if split_audio == "True":
            result, new_dir_path = process_audio(input_audio_path)
            if result == "Error":
                return "Error with Split Audio", None
            dir_path = (
                new_dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
            )
            if dir_path != "":
                paths = [
                    os.path.join(root, name)
                    for root, _, files in os.walk(dir_path, topdown=False)
                    for name in files
                    if name.endswith(".wav") and root == dir_path
                ]
            try:
                for path in paths:
                    voice_conversion(
                        sid,
                        path,
                        f0_up_key,
                        None,
                        f0_method,
                        file_index,
                        index_rate,
                        resample_sr,
                        rms_mix_rate,
                        protect,
                        hop_length,
                        path,
                        False,
                        f0autotune,
                        filter_radius,
                        embedder_model,
                        embedder_model_custom,
                    )
            except Exception as error:
                print(error)
                return f"Error {error}"
            print("Finished processing segmented audio, now merging audio...")
            merge_timestamps_file = os.path.join(
                os.path.dirname(new_dir_path),
                f"{os.path.basename(input_audio_path).split('.')[0]}_timestamps.txt",
            )
            tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
            os.remove(merge_timestamps_file)

        else:
            audio_opt = vc.pipeline(
                hubert_model,
                net_g,
                sid,
                audio,
                input_audio_path,
                f0_up_key,
                f0_method,
                file_index,
                index_rate,
                if_f0,
                filter_radius,
                tgt_sr,
                resample_sr,
                rms_mix_rate,
                version,
                protect,
                hop_length,
                f0autotune,
                f0_file=f0_file,
            )
        if output_path is not None:
            sf.write(output_path, audio_opt, tgt_sr, format="WAV")

        return (tgt_sr, audio_opt)

    except Exception as error:
        print(error)


def get_vc(weight_root, sid):
    global n_spk, tgt_sr, net_g, vc, cpt, version
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model is not None:
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
    person = weight_root
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
    if_f0 = cpt.get("f0", 1)

    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]


def infer_pipeline(

    f0up_key,

    filter_radius,

    index_rate,

    rms_mix_rate,

    protect,

    hop_length,

    f0method,

    audio_input_path,

    audio_output_path,

    model_path,

    index_path,

    split_audio,

    f0autotune,

    clean_audio,

    clean_strength,

    export_format,

    embedder_model,

    embedder_model_custom,

    upscale_audio,

):
    global tgt_sr, net_g, vc, cpt

    get_vc(model_path, 0)

    try:

        if upscale_audio == "True":
            upscale(audio_input_path, audio_input_path)

        start_time = time.time()
        voice_conversion(
            sid=0,
            input_audio_path=audio_input_path,
            f0_up_key=f0up_key,
            f0_file=None,
            f0_method=f0method,
            file_index=index_path,
            index_rate=float(index_rate),
            rms_mix_rate=float(rms_mix_rate),
            protect=float(protect),
            hop_length=hop_length,
            output_path=audio_output_path,
            split_audio=split_audio,
            f0autotune=f0autotune,
            filter_radius=filter_radius,
            embedder_model=embedder_model,
            embedder_model_custom=embedder_model_custom,
        )

        if clean_audio == "True":
            cleaned_audio = remove_audio_noise(audio_output_path, clean_strength)
            if cleaned_audio is not None:
                sf.write(audio_output_path, cleaned_audio, tgt_sr, format="WAV")

        output_path_format = audio_output_path.replace(
            ".wav", f".{export_format.lower()}"
        )
        audio_output_path = convert_audio_format(
            audio_output_path, output_path_format, export_format
        )

        end_time = time.time()
        elapsed_time = end_time - start_time
        print(
            f"Conversion completed. Output file: '{audio_output_path}' in {elapsed_time:.2f} seconds."
        )

    except Exception as error:
        print(f"Voice conversion failed: {error}")