File size: 5,400 Bytes
1397f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import torch
import hashlib
import datetime
from collections import OrderedDict


def replace_keys_in_dict(d, old_key_part, new_key_part):
    # Use OrderedDict if the original is an OrderedDict
    if isinstance(d, OrderedDict):
        updated_dict = OrderedDict()
    else:
        updated_dict = {}
    for key, value in d.items():
        # Replace the key part if found
        new_key = key.replace(old_key_part, new_key_part)
        # If the value is a dictionary, apply the function recursively
        if isinstance(value, dict):
            value = replace_keys_in_dict(value, old_key_part, new_key_part)
        updated_dict[new_key] = value
    return updated_dict


def extract_small_model(path, name, sr, if_f0, version, epoch, step):
    try:
        ckpt = torch.load(path, map_location="cpu")
        pth_file = f"{name}.pth"
        pth_file_old_version_path = os.path.join("logs", f"{pth_file}_old_version.pth")
        opt = OrderedDict(
            weight={
                key: value.half() for key, value in ckpt.items() if "enc_q" not in key
            }
        )
        if "model" in ckpt:
            ckpt = ckpt["model"]
        opt = OrderedDict()
        opt["weight"] = {}
        for key in ckpt.keys():
            if "enc_q" in key:
                continue
            opt["weight"][key] = ckpt[key].half()
        if sr == "40000":
            opt["config"] = [
                1025,
                32,
                192,
                192,
                768,
                2,
                6,
                3,
                0,
                "1",
                [3, 7, 11],
                [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                [10, 10, 2, 2],
                512,
                [16, 16, 4, 4],
                109,
                256,
                40000,
            ]
        elif sr == "48000":
            if version == "v1":
                opt["config"] = [
                    1025,
                    32,
                    192,
                    192,
                    768,
                    2,
                    6,
                    3,
                    0,
                    "1",
                    [3, 7, 11],
                    [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                    [10, 6, 2, 2, 2],
                    512,
                    [16, 16, 4, 4, 4],
                    109,
                    256,
                    48000,
                ]
            else:
                opt["config"] = [
                    1025,
                    32,
                    192,
                    192,
                    768,
                    2,
                    6,
                    3,
                    0,
                    "1",
                    [3, 7, 11],
                    [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                    [12, 10, 2, 2],
                    512,
                    [24, 20, 4, 4],
                    109,
                    256,
                    48000,
                ]
        elif sr == "32000":
            if version == "v1":
                opt["config"] = [
                    513,
                    32,
                    192,
                    192,
                    768,
                    2,
                    6,
                    3,
                    0,
                    "1",
                    [3, 7, 11],
                    [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                    [10, 4, 2, 2, 2],
                    512,
                    [16, 16, 4, 4, 4],
                    109,
                    256,
                    32000,
                ]
            else:
                opt["config"] = [
                    513,
                    32,
                    192,
                    192,
                    768,
                    2,
                    6,
                    3,
                    0,
                    "1",
                    [3, 7, 11],
                    [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                    [10, 8, 2, 2],
                    512,
                    [20, 16, 4, 4],
                    109,
                    256,
                    32000,
                ]

        opt["epoch"] = epoch
        opt["step"] = step
        opt["sr"] = sr
        opt["f0"] = int(if_f0)
        opt["version"] = version
        opt["creation_date"] = datetime.datetime.now().isoformat()

        hash_input = f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}"
        model_hash = hashlib.sha256(hash_input.encode()).hexdigest()
        opt["model_hash"] = model_hash

        model = torch.load(pth_file_old_version_path, map_location=torch.device("cpu"))
        torch.save(
            replace_keys_in_dict(
                replace_keys_in_dict(
                    model, ".parametrizations.weight.original1", ".weight_v"
                ),
                ".parametrizations.weight.original0",
                ".weight_g",
            ),
            pth_file_old_version_path,
        )
        os.remove(pth_file_old_version_path)
        os.rename(pth_file_old_version_path, pth_file)
    except Exception as error:
        print(error)