Spaces:
Runtime error
Runtime error
File size: 5,447 Bytes
e3ce2d3 fb49ce5 e3ce2d3 fb49ce5 e3ce2d3 dcacd5b e3ce2d3 e681f63 e3ce2d3 fe73477 e3ce2d3 fe73477 e681f63 e3ce2d3 2265388 e3ce2d3 a85d67f 813d820 e3ce2d3 c1c4d63 e3ce2d3 f5b46d6 c1c4d63 e3ce2d3 c1c4d63 e3ce2d3 2265388 e3ce2d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None):
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = np.expand_dims(depth, 0)
depth = depth.astype(np.float32) / 255.0
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
generator = None
if seed is not None:
generator = torch.Generator(device=device).manual_seed(seed)
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
depth_map=depth,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result['images']
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
gr.Markdown("## Stable Diffusion 2 Depth2Img")
gr.HTML("<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
depth_image = gr.Image(type="pil", label="Depth Image Optional")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1,
maximum=50, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column():
gallery = gr.Gallery(label="Generated Images", show_label=False).style(
grid=[2], height="auto")
gr.Examples(
examples=[
["./examples/baby.jpg", "high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
"", 50, 4, 9.0, 123123123, 0.8, None],
["./examples/gol.jpg", "professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
"", 50, 4, 9.0, 1734133747, 0.9, None],
["./examples/bag.jpg", "a photo of a bag of cookies in the bathroom", "low light, dark, blurry", 50, 4, 9.0, 1734133747, 0.9, "./examples/depth.jpg"],
["./examples/smile_face.jpg", "a hand holding a very spherical orange", "low light, dark, blurry", 50, 4, 6.0, 961736534, 0.5, "./examples/smile_depth.jpg"]
],
inputs=[input_image, prompt, negative_prompt, steps,
num_samples, scale, seed, strength, depth_image],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt,
steps, num_samples, scale, seed, strength, depth_image], outputs=[gallery])
block.launch(show_api=False) |