|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_id = "raduqus/reco_1b_16bit" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
|
|
def infer( |
|
prompt, |
|
seed=0, |
|
randomize_seed=True, |
|
max_length=100, |
|
temperature=0.7, |
|
top_p=0.9 |
|
): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=max_length, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
generator=generator |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return generated_text |
|
|
|
|
|
demo = gr.Interface( |
|
fn=infer, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, value=0), |
|
gr.Checkbox(label="Randomize Seed", value=True), |
|
gr.Slider(label="Max Length", minimum=10, maximum=200, value=100), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7), |
|
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9) |
|
], |
|
outputs=gr.Textbox(label="Recommendation"), |
|
title="Task Recommender", |
|
description="Generate task recommendations" |
|
) |
|
|
|
|
|
demo.launch( |
|
enable_queue=True, |
|
server_port=7860, |
|
api_open=True |
|
) |