Update app.py
Browse files
app.py
CHANGED
@@ -2,59 +2,85 @@ from fastapi import FastAPI, HTTPException
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
-
import
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
|
|
9 |
model_id = "raduqus/reco_1b_16bit"
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
class RecommendationRequest(BaseModel):
|
32 |
prompt: str
|
|
|
|
|
|
|
33 |
max_length: int = 100
|
34 |
temperature: float = 0.7
|
35 |
top_p: float = 0.9
|
36 |
|
37 |
@app.post("/recommend")
|
38 |
-
@spaces.GPU # Ensure GPU usage for inference
|
39 |
async def recommend_task(request: RecommendationRequest):
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
max_length=request.max_length,
|
45 |
temperature=request.temperature,
|
46 |
-
top_p=request.top_p
|
47 |
-
do_sample=True
|
48 |
)
|
49 |
-
|
50 |
-
return {"recommendation": generated_text}
|
51 |
except Exception as e:
|
52 |
raise HTTPException(status_code=500, detail=str(e))
|
53 |
|
54 |
-
@app.get("/")
|
55 |
-
async def root():
|
56 |
-
return {"message": "Task recommender is running on ZeroGPU!"}
|
57 |
-
|
58 |
if __name__ == "__main__":
|
59 |
import uvicorn
|
60 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Configuration
|
11 |
model_id = "raduqus/reco_1b_16bit"
|
12 |
+
device = "cuda"
|
13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
14 |
|
15 |
+
def infer(
|
16 |
+
prompt,
|
17 |
+
negative_prompt=None,
|
18 |
+
seed=0,
|
19 |
+
randomize_seed=True,
|
20 |
+
max_length=100,
|
21 |
+
temperature=0.7,
|
22 |
+
top_p=0.9
|
23 |
+
):
|
24 |
+
# Seed handling
|
25 |
+
if randomize_seed:
|
26 |
+
seed = random.randint(0, MAX_SEED)
|
27 |
+
|
28 |
+
# Set random generator
|
29 |
+
generator = torch.Generator().manual_seed(seed)
|
30 |
+
|
31 |
+
# Load model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
variant="fp16",
|
37 |
+
use_safetensors=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Move to GPU
|
41 |
+
model = model.to(device)
|
42 |
+
|
43 |
+
# Generate
|
44 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
45 |
+
outputs = model.generate(
|
46 |
+
inputs.input_ids,
|
47 |
+
max_length=max_length,
|
48 |
+
temperature=temperature,
|
49 |
+
top_p=top_p,
|
50 |
+
do_sample=True,
|
51 |
+
generator=generator
|
52 |
+
)
|
53 |
+
|
54 |
+
# Decode
|
55 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
+
|
57 |
+
return generated_text
|
58 |
|
59 |
class RecommendationRequest(BaseModel):
|
60 |
prompt: str
|
61 |
+
negative_prompt: str = None
|
62 |
+
seed: int = 0
|
63 |
+
randomize_seed: bool = True
|
64 |
max_length: int = 100
|
65 |
temperature: float = 0.7
|
66 |
top_p: float = 0.9
|
67 |
|
68 |
@app.post("/recommend")
|
|
|
69 |
async def recommend_task(request: RecommendationRequest):
|
70 |
try:
|
71 |
+
result = infer(
|
72 |
+
prompt=request.prompt,
|
73 |
+
negative_prompt=request.negative_prompt,
|
74 |
+
seed=request.seed,
|
75 |
+
randomize_seed=request.randomize_seed,
|
76 |
max_length=request.max_length,
|
77 |
temperature=request.temperature,
|
78 |
+
top_p=request.top_p
|
|
|
79 |
)
|
80 |
+
return {"recommendation": result}
|
|
|
81 |
except Exception as e:
|
82 |
raise HTTPException(status_code=500, detail=str(e))
|
83 |
|
|
|
|
|
|
|
|
|
84 |
if __name__ == "__main__":
|
85 |
import uvicorn
|
86 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|