rafaaa2105's picture
Update app.py
9dc238a verified
raw
history blame
11.6 kB
import gradio as gr
import moviepy.editor as mp
from moviepy.video.tools.subtitles import SubtitlesClip
from datetime import timedelta
import os
import logging
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
MarianMTModel,
MarianTokenizer,
pipeline
)
import torch
import numpy as np
from pydub import AudioSegment
import spaces
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('video_subtitler.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Dictionary of supported languages and their codes for MarianMT
LANGUAGE_CODES = {
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Russian": "ru",
"Chinese": "zh",
"Japanese": "ja",
"Korean": "ko"
}
def get_model_name(source_lang, target_lang):
"""Get MarianMT model name for language pair"""
logger.info(f"Getting model name for translation from {source_lang} to {target_lang}")
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
def format_timestamp(seconds):
"""Convert seconds to SRT timestamp format"""
td = timedelta(seconds=seconds)
hours = td.seconds//3600
minutes = (td.seconds//60)%60
seconds = td.seconds%60
milliseconds = td.microseconds//1000
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def translate_text(text, source_lang, target_lang):
"""Translate text using MarianMT"""
if source_lang == target_lang:
logger.info("Source and target languages are the same, skipping translation")
return text
try:
logger.info(f"Translating text from {source_lang} to {target_lang}")
model_name = get_model_name(source_lang, target_lang)
logger.info(f"Loading translation model: {model_name}")
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
logger.debug(f"Input text: {text}")
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
translated = model.generate(**inputs)
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
logger.debug(f"Translated text: {translated_text}")
return translated_text
except Exception as e:
logger.error(f"Translation error: {str(e)}", exc_info=True)
return text
def load_audio(video_path):
"""Extract and load audio from video file"""
logger.info(f"Loading audio from video: {video_path}")
try:
video = mp.VideoFileClip(video_path)
logger.info(f"Video loaded. Duration: {video.duration} seconds")
temp_audio_path = "temp_audio.wav"
logger.info(f"Extracting audio to temporary file: {temp_audio_path}")
video.audio.write_audiofile(temp_audio_path)
logger.info("Loading audio file with pydub")
audio = AudioSegment.from_wav(temp_audio_path)
audio_array = np.array(audio.get_array_of_samples())
logger.info("Converting audio to float32 and normalizing")
audio_array = audio_array.astype(np.float32) / np.iinfo(np.int16).max
if len(audio_array.shape) > 1:
logger.info("Converting stereo to mono")
audio_array = audio_array.mean(axis=1)
logger.info(f"Audio loaded successfully. Shape: {audio_array.shape}, Sample rate: {audio.frame_rate}")
return audio_array, audio.frame_rate, video, temp_audio_path
except Exception as e:
logger.error(f"Error loading audio: {str(e)}", exc_info=True)
raise
def create_srt(segments, target_lang="en"):
"""Convert transcribed segments to SRT format with optional translation"""
logger.info(f"Creating SRT content for {len(segments)} segments")
srt_content = ""
for i, segment in enumerate(segments, start=1):
start_time = format_timestamp(segment['start'])
end_time = format_timestamp(segment['end'])
text = segment['text'].strip()
logger.debug(f"Processing segment {i}: {start_time} --> {end_time}")
if segment.get('language') and segment['language'] != target_lang:
logger.info(f"Translating segment {i}")
text = translate_text(text, segment['language'], target_lang)
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
return srt_content
def create_subtitle_clips(segments, videosize, target_lang="en"):
"""Create subtitle clips for moviepy with translation support"""
logger.info(f"Creating subtitle clips for {len(segments)} segments")
subtitle_clips = []
for i, segment in enumerate(segments):
logger.debug(f"Processing subtitle clip {i}")
start_time = segment['start']
end_time = segment['end']
duration = end_time - start_time
text = segment['text'].strip()
if segment.get('language') and segment['language'] != target_lang:
logger.info(f"Translating subtitle {i}")
text = translate_text(text, segment['language'], target_lang)
try:
text_clip = mp.TextClip(
text,
font='Arial',
fontsize=24,
color='white',
stroke_color='black',
stroke_width=1,
size=videosize,
method='caption'
).set_position(('center', 'bottom'))
text_clip = text_clip.set_start(start_time).set_duration(duration)
subtitle_clips.append(text_clip)
except Exception as e:
logger.error(f"Error creating subtitle clip {i}: {str(e)}", exc_info=True)
return subtitle_clips
@spaces.GPU
def process_video(video_path, target_lang="en"):
"""Main function to process video and add subtitles with translation"""
logger.info(f"Starting video processing: {video_path}")
try:
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Load CrisperWhisper model
model_id = "nyrahealth/CrisperWhisper"
logger.info(f"Loading CrisperWhisper model: {model_id}")
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
low_cpu_mem_usage=True,
use_safetensors=True
).to(device)
logger.info("Loading processor")
processor = AutoProcessor.from_pretrained(model_id)
# Load audio and video
logger.info("Loading audio from video")
audio_array, sampling_rate, video, temp_audio_path = load_audio(video_path)
# Create pipeline
logger.info("Creating ASR pipeline")
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device=device,
)
# Transcribe audio
logger.info("Starting transcription")
result = pipe(audio_array, return_timestamps="word")
logger.info("Transcription completed")
logger.debug(f"Transcription result: {result}")
# Convert word-level timestamps to segments
logger.info("Converting word-level timestamps to segments")
segments = []
current_segment = {"text": "", "start": result["chunks"][0]["timestamp"][0]}
for chunk in result["chunks"]:
current_segment["text"] += " " + chunk["text"]
current_segment["end"] = chunk["timestamp"][1]
if len(current_segment["text"].split()) > 10 or \
(current_segment["end"] - current_segment["start"]) > 5.0:
segments.append(current_segment)
if chunk != result["chunks"][-1]:
current_segment = {"text": "", "start": chunk["timestamp"][1]}
if current_segment["text"]:
segments.append(current_segment)
logger.info(f"Created {len(segments)} segments")
# Add detected language
detected_language = "en"
for segment in segments:
segment['language'] = detected_language
# Create SRT content
logger.info("Creating SRT content")
srt_content = create_srt(segments, target_lang)
# Save SRT file
video_name = os.path.splitext(os.path.basename(video_path))[0]
srt_path = f"{video_name}_subtitles_{target_lang}.srt"
logger.info(f"Saving SRT file: {srt_path}")
with open(srt_path, "w", encoding="utf-8") as f:
f.write(srt_content)
# Create subtitle clips
logger.info("Creating subtitle clips")
subtitle_clips = create_subtitle_clips(segments, video.size, target_lang)
# Combine video with subtitles
logger.info("Combining video with subtitles")
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
# Save final video
output_video_path = f"{video_name}_with_subtitles_{target_lang}.mp4"
logger.info(f"Saving final video: {output_video_path}")
final_video.write_videofile(output_video_path)
# Clean up
logger.info("Cleaning up temporary files")
os.remove(temp_audio_path)
video.close()
final_video.close()
logger.info("Video processing completed successfully")
return output_video_path, srt_path
except Exception as e:
logger.error(f"Error in video processing: {str(e)}", exc_info=True)
raise
def gradio_interface(video_file, target_language):
"""Gradio interface function with language selection"""
try:
logger.info(f"Processing new video request: {video_file.name}")
logger.info(f"Target language: {target_language}")
video_path = video_file.name
target_lang = LANGUAGE_CODES[target_language]
output_video, srt_file = process_video(video_path, target_lang)
logger.info("Processing completed successfully")
return output_video, srt_file
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}", exc_info=True)
return str(e), None
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Video(label="Upload Video"),
gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Target Language"
)
],
outputs=[
gr.Video(label="Video with Subtitles"),
gr.File(label="SRT Subtitle File")
],
title="Video Subtitler with CrisperWhisper",
description="Upload a video to generate subtitles using CrisperWhisper, translate them to your chosen language, and embed them directly in the video."
)
if __name__ == "__main__":
logger.info("Starting Video Subtitler application")
iface.launch()