dogfier / app.py
rafaelcarvalhoj's picture
1.0.0
4a43857
raw
history blame
883 Bytes
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Dogfier"
description = "Classificador raças de cachorro treinada pela Rede Neural resnet34 através da biblioteca do fastai"
examples = ['basset.jpg','border-terrier.jpg','golden-retriever.jpg','shih-tzu.jpg']
interpretation='default'
enable_queue=True
gr.Interface(fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
outputs=gr.outputs.Label(num_top_classes=3),
title=title,
description=description,
examples=examples,
interpretation=interpretation,
enable_queue=enable_queue
).launch()