import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Dogfier" description = "Classificador raças de cachorro treinada pela Rede Neural resnet34 através da biblioteca do fastai" examples = ['basset.jpg','border-terrier.jpg','golden-retriever.jpg','shih-tzu.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue ).launch()