Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from PIL import Image | |
from lang_list import LANGS | |
print (gr.__version__) | |
##Image Classification | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
extractor = AutoFeatureExtractor.from_pretrained("rajistics/finetuned-indian-food") | |
model = AutoModelForImageClassification.from_pretrained("rajistics/finetuned-indian-food") | |
def image_to_text(imagepic): | |
inputs = extractor(images=imagepic, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
return (model.config.id2label[predicted_class_idx]) | |
##Translation | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
#Get list of language codes: https://github.com/facebookresearch/flores/tree/main/flores200#languages-in-flores-200 | |
modelt = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") | |
tokenizert = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
def translation(text,target): | |
translator = pipeline('translation', model=modelt, tokenizer=tokenizert, src_lang="eng_Latn", tgt_lang=target) | |
output = translator(text) | |
return (output[0]['translation_text']) | |
##Translation | |
demo = gr.Blocks() | |
with demo: | |
image_file = gr.inputs.Image(type="pil") | |
b1 = gr.Button("Recognize Image") | |
text = gr.Textbox() | |
b1.click(image_to_text, inputs=image_file, outputs=text) | |
target = gr.Dropdown(LANGS,interactive=True,label="Target Language") | |
b2 = gr.Button("Translation") | |
out1 = gr.Textbox() | |
b2.click(translation, inputs=[text,target], outputs=out1) | |
examples = gr.Examples(examples=[["003.jpg"],["126.jpg"],["401.jpg"]],inputs=[image_file]) | |
#examples = gr.Examples(examples=[["003.jpg"]],inputs=[image_file]) | |
demo.launch() |