rajistics commited on
Commit
d3545bf
·
1 Parent(s): 228c6e4

Added language selector

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import gradio as gr
3
  from PIL import Image
 
4
 
5
  ##Image Classification
6
  from transformers import AutoFeatureExtractor, AutoModelForImageClassification
@@ -20,8 +21,8 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
20
  modelt = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
21
  tokenizert = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
22
 
23
- def translation(text):
24
- translator = pipeline('translation', model=modelt, tokenizer=tokenizert, src_lang="eng_Latn", tgt_lang='aeb_Arab')
25
  output = translator(text)
26
  return (output[0]['translation_text'])
27
 
@@ -32,7 +33,8 @@ with demo:
32
  b1 = gr.Button("Recognize Image")
33
  text = gr.Textbox()
34
  b1.click(image_to_text, inputs=image_file, outputs=text)
 
35
  b2 = gr.Button("Translation")
36
  out1 = gr.Textbox()
37
- b2.click(translation, inputs=text, outputs=out1)
38
  demo.launch()
 
1
  import os
2
  import gradio as gr
3
  from PIL import Image
4
+ from lang_list import LANG
5
 
6
  ##Image Classification
7
  from transformers import AutoFeatureExtractor, AutoModelForImageClassification
 
21
  modelt = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
22
  tokenizert = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
23
 
24
+ def translation(text,target):
25
+ translator = pipeline('translation', model=modelt, tokenizer=tokenizert, src_lang="eng_Latn", tgt_lang=target)
26
  output = translator(text)
27
  return (output[0]['translation_text'])
28
 
 
33
  b1 = gr.Button("Recognize Image")
34
  text = gr.Textbox()
35
  b1.click(image_to_text, inputs=image_file, outputs=text)
36
+ target = gr.Dropdown(LANG,interactive=True,label="Target Language")
37
  b2 = gr.Button("Translation")
38
  out1 = gr.Textbox()
39
+ b2.click(translation, inputs=[text,target], outputs=out1)
40
  demo.launch()