File size: 7,595 Bytes
7efeab0
 
 
 
 
 
 
 
 
 
06350c8
7efeab0
 
 
 
169a56e
06350c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a16f41b
7efeab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169a56e
7efeab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169a56e
7efeab0
 
169a56e
7efeab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import pandas as pd
from bertopic import BERTopic
from huggingface_hub import InferenceClient
from bertopic.vectorizers import ClassTfidfTransformer
from sentence_transformers import SentenceTransformer
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from tempfile import NamedTemporaryFile
import matplotlib.pyplot as plt
import plotly.express as px
import subprocess

from wordcloud import WordCloud


def process_file_bm25(file,mode,min_cluster_size,top_n_words,ngram):
    
    

    # Run the shell command and capture its output
    x = subprocess.check_output(["pip", "show", "scipy"])
    
    # Decode the byte string output to a regular string
    x = x.decode("utf-8")
     # Run the shell command and capture its output
    y = subprocess.check_output(["pip", "show", "numpy"])
    
    # Decode the byte string output to a regular string
    y = y.decode("utf-8")
     # Run the shell command and capture its output
    z = subprocess.check_output(["pip", "show", "plotly"])
    
    # Decode the byte string output to a regular string
    z = z.decode("utf-8")
    # Print the output
  
    print(x,y,z)
    if file.name.endswith('.csv'):
        df = pd.read_csv(file)
    elif file.name.endswith('.xls') or file.name.endswith('.xlsx'):
        df = pd.read_excel(file)
    else:
        raise ValueError("Unsupported file format. Please provide a CSV or Excel file.")

    # Ensure that the 'products' column is present in the dataframe
    if 'products' not in df.columns.str.lower():
        raise ValueError("The input file must have a column named 'products'.")

    # Convert the 'products' column to a list
    sentences_list = df['products'].tolist()
    print(len(sentences_list))
    ctfidf_model = ClassTfidfTransformer(bm25_weighting=True,reduce_frequent_words=True)

    if mode=="Automated clustering":

      topic_model = BERTopic(ctfidf_model=ctfidf_model,n_gram_range =(1,ngram),top_n_words=top_n_words)

    else:

      topic_model = BERTopic(ctfidf_model=ctfidf_model,n_gram_range =(1,ngram),top_n_words=top_n_words,min_topic_size=min_cluster_size)


    # Perform topic modeling
    topics, probabilities = topic_model.fit_transform(sentences_list)

    # Visualize all graphs

    topics_info=topic_model.get_topic_info()
    df_topics_bm25= topics_info
    #print(topics)
    try:
      barchart = topic_model.visualize_barchart(top_n_topics=10)
    except:
      barchart='Error message'
    try:
      topics_plot = topic_model.visualize_topics()
    except:
      topics_plot = ' Error message'
    heatmap = topic_model.visualize_heatmap()
    hierarchy = topic_model.visualize_hierarchy()
    df['topic_number'] = topics

    # Encode the topic numbers to make them categorical
    label_encoder = LabelEncoder()
    df['topic_number_encoded'] = label_encoder.fit_transform(df['topic_number'])
    temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)
    df_bm25=df
    #print(df)

    return  df,temp_file.name,topics_info ,barchart,topics_plot, heatmap, hierarchy 
    

def process_file_bert(file,mode,min_cluster_size,top_n_words,ngram):
    # Read the Excel sheet or CSV file
    if file.name.endswith('.csv'):
        df = pd.read_csv(file)
    elif file.name.endswith('.xls') or file.name.endswith('.xlsx'):
        df = pd.read_excel(file)
    else:
        raise ValueError("Unsupported file format. Please provide a CSV or Excel file.")

    # Ensure that the 'products' column is present in the dataframe
    if 'products' not in df.columns.str.lower():
        raise ValueError("The input file must have a column named 'products'.")

    # Convert the 'products' column to a list
    sentences_list = df['products'].tolist()
    print(len(sentences_list))
    representation_model = KeyBERTInspired()
    if mode=="Automated clustering":
      # Fine-tune your topic representations

      topic_model = BERTopic(representation_model=representation_model,n_gram_range =(1,ngram),top_n_words=top_n_words)

    else:
      
      topic_model = BERTopic(representation_model=representation_model,n_gram_range =(1,ngram),top_n_words=top_n_words,min_topic_size=min_cluster_size)
      
    topics, probabilities = topic_model.fit_transform(sentences_list)

    # Visualize all graphs

    topics_info=topic_model.get_topic_info()
    state.df_topics_bert= topics_info
    #print(topics)
    try:
      barchart = topic_model.visualize_barchart(top_n_topics=10)
    except:
      barchart='Error message'
    try:
      topics_plot = topic_model.visualize_topics()
    except:
      topics_plot = ' Error message'
    heatmap = topic_model.visualize_heatmap()
    hierarchy = topic_model.visualize_hierarchy()
    df['topic_number'] = topics

    # Encode the topic numbers to make them categorical
    label_encoder = LabelEncoder()
    df['topic_number_encoded'] = label_encoder.fit_transform(df['topic_number'])
    temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)

    state.df_bert=df
    return  df, topics_info ,barchart,topics_plot, heatmap, hierarchy


client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, system_prompt, temperature=0.9, max_new_tokens=4096, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


# Define the function to generate the plot based on user inputs
def generate_plot(topic, x_axis_index, y_axis_index, chart_type, agg_func):
    x_axis = df.columns[1:][x_axis_index]
    y_axis = df.columns[1:][y_axis_index]
    print(x_axis,y_axis)
    filtered_df = df[df['Topic Number'] == topic]

    if chart_type == "scatter":
        fig = px.scatter(filtered_df, x=x_axis, y=y_axis)
    elif chart_type == "bar":
        print('Bar chart selected')
        if agg_func == "count_distinct":
            fig = px.bar(filtered_df, x=x_axis, y=y_axis, color=y_axis, barmode='group')
        else:
            fig = px.bar(filtered_df, x=x_axis, y=y_axis, color=y_axis)
    elif chart_type == "line":
        fig = px.line(filtered_df, x=x_axis, y=y_axis)
    elif chart_type == "box":
        fig = px.box(filtered_df, x=x_axis, y=y_axis)
    elif chart_type == "wordcloud":
        text = ' '.join(filtered_df[y_axis].astype(str))
        wordcloud = WordCloud(width=800, height=400, random_state=21, max_font_size=110).generate(text)
        plt.figure(figsize=(10, 7))
        plt.imshow(wordcloud, interpolation="bilinear")
        plt.axis('off')
        plt.show()
        return None
    elif chart_type == "pie":
        fig = px.pie(filtered_df, names=x_axis, values=y_axis)
        print('Pie chart selected')

    return fig