Spaces:
Running
Running
Updated
Browse files
app.py
CHANGED
@@ -1,254 +1,254 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
import pandas as pd
|
4 |
-
import plotly.express as px
|
5 |
-
import ast
|
6 |
-
import google.generativeai as genai
|
7 |
-
from io import StringIO
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
|
10 |
-
# Load environment variables
|
11 |
-
load_dotenv()
|
12 |
-
|
13 |
-
# Configure Genai Key
|
14 |
-
# genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
|
15 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
16 |
-
|
17 |
-
# Function to load Google Gemini Model and provide queries as response
|
18 |
-
def get_gemini_response(question, prompt):
|
19 |
-
model = genai.GenerativeModel('gemini-pro')
|
20 |
-
response = model.generate_content([prompt[0], question])
|
21 |
-
return response.text.strip()
|
22 |
-
|
23 |
-
# Function to load data from CSV
|
24 |
-
@st.cache_data
|
25 |
-
def load_data():
|
26 |
-
# This is a sample CSV content. In practice, you'd read this from a file.
|
27 |
-
csv_content = """
|
28 |
-
id,product_name,category,price,stock_quantity,supplier,last_restock_date
|
29 |
-
1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01
|
30 |
-
2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15
|
31 |
-
3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10
|
32 |
-
4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20
|
33 |
-
5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05
|
34 |
-
6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28
|
35 |
-
7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15
|
36 |
-
8,Backpack,Bags,39.99,60,TravelGear,2024-02-10
|
37 |
-
9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20
|
38 |
-
10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30
|
39 |
-
"""
|
40 |
-
df = pd.read_csv(StringIO(csv_content))
|
41 |
-
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
42 |
-
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
43 |
-
return df
|
44 |
-
|
45 |
-
# # Function to execute pandas query
|
46 |
-
# def execute_pandas_query(df, query):
|
47 |
-
# try:
|
48 |
-
# # This is a very simple and unsafe way to execute queries.
|
49 |
-
# # In a real application, you'd need to parse the SQL and translate it to pandas operations.
|
50 |
-
# result = eval(f"df.{query}")
|
51 |
-
# return result
|
52 |
-
# except Exception as e:
|
53 |
-
# st.error(f"An error occurred: {e}")
|
54 |
-
# return pd.DataFrame()
|
55 |
-
|
56 |
-
# # Define Your Prompt
|
57 |
-
# prompt = [
|
58 |
-
# """
|
59 |
-
# You are an expert in converting English questions to pandas DataFrame operations!
|
60 |
-
# The DataFrame 'df' has the following columns:
|
61 |
-
# id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
62 |
-
|
63 |
-
# Examples:
|
64 |
-
# - How many products do we have in total?
|
65 |
-
# The pandas operation will be: len()
|
66 |
-
# - What are all the products in the Electronics category?
|
67 |
-
# The pandas operation will be: query("category == 'Electronics'")
|
68 |
-
|
69 |
-
# The pandas operation should be a valid Python expression that can be applied to a DataFrame 'df'.
|
70 |
-
# """
|
71 |
-
# ]
|
72 |
-
|
73 |
-
# Function to execute pandas query
|
74 |
-
# def execute_pandas_query(df, query):
|
75 |
-
# try:
|
76 |
-
# # Remove any 'df.' prefixes from the query
|
77 |
-
# query = query.replace('df.', '')
|
78 |
-
|
79 |
-
# # Execute the query
|
80 |
-
# if query.startswith('query'):
|
81 |
-
# # For filtering operations
|
82 |
-
# result = df.query(query.split('(', 1)[1].rsplit(')', 1)[0].strip('"\''))
|
83 |
-
# elif query.startswith('groupby'):
|
84 |
-
# # For groupby operations
|
85 |
-
# group_col, agg_func = query.split('.', 2)[1:]
|
86 |
-
# result = eval(f"df.groupby('{group_col}').{agg_func}")
|
87 |
-
# else:
|
88 |
-
# # For other operations
|
89 |
-
# result = eval(f"df.{query}")
|
90 |
-
|
91 |
-
# return result
|
92 |
-
# except Exception as e:
|
93 |
-
# st.error(f"An error occurred: {e}")
|
94 |
-
# return pd.DataFrame()
|
95 |
-
|
96 |
-
# # Define Your Prompt
|
97 |
-
# prompt = [
|
98 |
-
# """
|
99 |
-
# You are an expert in converting English questions to pandas DataFrame operations!
|
100 |
-
# The DataFrame 'df' has the following columns:
|
101 |
-
# id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
102 |
-
|
103 |
-
# Examples:
|
104 |
-
# - How many products do we have in total?
|
105 |
-
# The pandas operation will be: shape[0]
|
106 |
-
# - What are all the products in the Electronics category?
|
107 |
-
# The pandas operation will be: query("category == 'Electronics'")
|
108 |
-
# - What is the average price of products in each category?
|
109 |
-
# The pandas operation will be: groupby('category').mean()['price']
|
110 |
-
|
111 |
-
# The pandas operation should be a valid Python expression that can be applied to a DataFrame without the 'df.' prefix.
|
112 |
-
# """
|
113 |
-
# ]
|
114 |
-
|
115 |
-
# Function to safely evaluate a string as a Python expression
|
116 |
-
def safe_eval(expr, df):
|
117 |
-
try:
|
118 |
-
# Parse the expression
|
119 |
-
parsed = ast.parse(expr, mode='eval')
|
120 |
-
|
121 |
-
# Define allowed names
|
122 |
-
allowed_names = {
|
123 |
-
'df': df,
|
124 |
-
'query': df.query,
|
125 |
-
'groupby': df.groupby,
|
126 |
-
'mean': pd.DataFrame.mean,
|
127 |
-
'sum': pd.DataFrame.sum,
|
128 |
-
'count': pd.DataFrame.count,
|
129 |
-
'max': pd.DataFrame.max,
|
130 |
-
'min': pd.DataFrame.min
|
131 |
-
}
|
132 |
-
|
133 |
-
# Evaluate the expression
|
134 |
-
return eval(compile(parsed, '<string>', 'eval'), allowed_names)
|
135 |
-
except Exception as e:
|
136 |
-
st.error(f"Error in query execution: {e}")
|
137 |
-
return pd.DataFrame()
|
138 |
-
|
139 |
-
# Function to execute pandas query
|
140 |
-
def execute_pandas_query(df, query):
|
141 |
-
try:
|
142 |
-
# Remove any 'df.' prefixes from the query
|
143 |
-
query = query.replace('df.', '')
|
144 |
-
|
145 |
-
# Execute the query
|
146 |
-
result = safe_eval(query, df)
|
147 |
-
|
148 |
-
# Convert result to DataFrame if it's not already
|
149 |
-
if not isinstance(result, pd.DataFrame):
|
150 |
-
if isinstance(result, pd.Series):
|
151 |
-
result = result.to_frame()
|
152 |
-
else:
|
153 |
-
result = pd.DataFrame({'Result': [result]})
|
154 |
-
|
155 |
-
return result
|
156 |
-
except Exception as e:
|
157 |
-
st.error(f"An error occurred: {e}")
|
158 |
-
return pd.DataFrame()
|
159 |
-
|
160 |
-
# Define Your Prompt
|
161 |
-
prompt = [
|
162 |
-
"""
|
163 |
-
You are an expert in converting English questions to pandas DataFrame operations!
|
164 |
-
The DataFrame 'df' has the following columns:
|
165 |
-
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
166 |
-
|
167 |
-
Examples:
|
168 |
-
- How many products do we have in total?
|
169 |
-
The pandas operation will be: len(df)
|
170 |
-
- What are all the products in the Electronics category?
|
171 |
-
The pandas operation will be: df.query("category == 'Electronics'")
|
172 |
-
- What is the average price of products in each category?
|
173 |
-
The pandas operation will be: df.groupby('category')['price'].mean()
|
174 |
-
|
175 |
-
The pandas operation should be a valid Python expression that can be applied to a DataFrame named 'df'.
|
176 |
-
Always include 'df.' at the beginning of your operations unless you're using a function like len().
|
177 |
-
"""
|
178 |
-
]
|
179 |
-
|
180 |
-
# Streamlit App
|
181 |
-
st.set_page_config(page_title="AutomatiX - Department Store Analytics", layout="wide")
|
182 |
-
|
183 |
-
# Load data
|
184 |
-
df = load_data()
|
185 |
-
|
186 |
-
# Sidebar for user input
|
187 |
-
st.sidebar.title("AutomatiX - Department Store Chat Interface")
|
188 |
-
question = st.sidebar.text_area("Enter your question:", key="input")
|
189 |
-
submit = st.sidebar.button("Ask Me")
|
190 |
-
|
191 |
-
# Main content area
|
192 |
-
st.title("AutomatiX - Department Store Dashboard")
|
193 |
-
|
194 |
-
if submit:
|
195 |
-
with st.spinner("Generating and Fetching the data..."):
|
196 |
-
pandas_query = get_gemini_response(question, prompt)
|
197 |
-
# st.code(pandas_query, language="python")
|
198 |
-
|
199 |
-
result_df = execute_pandas_query(df, pandas_query)
|
200 |
-
|
201 |
-
if not result_df.empty:
|
202 |
-
st.success("Query executed successfully!")
|
203 |
-
|
204 |
-
# Display data in a table
|
205 |
-
st.subheader("Data Table")
|
206 |
-
st.dataframe(result_df)
|
207 |
-
|
208 |
-
# # Create visualizations based on the data
|
209 |
-
st.subheader("Data Visualizations")
|
210 |
-
|
211 |
-
col1, col2 = st.columns(2)
|
212 |
-
|
213 |
-
with col1:
|
214 |
-
if 'price' in result_df.columns and result_df['price'].notna().any():
|
215 |
-
fig = px.histogram(result_df, x='price', title='Price Distribution')
|
216 |
-
st.plotly_chart(fig, use_container_width=True)
|
217 |
-
|
218 |
-
if 'category' in result_df.columns:
|
219 |
-
category_counts = result_df['category'].value_counts()
|
220 |
-
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
221 |
-
st.plotly_chart(fig, use_container_width=True)
|
222 |
-
|
223 |
-
with col2:
|
224 |
-
if 'last_restock_date' in result_df.columns:
|
225 |
-
result_df['restock_month'] = result_df['last_restock_date'].dt.to_period('M')
|
226 |
-
restock_counts = result_df['restock_month'].value_counts().sort_index()
|
227 |
-
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
228 |
-
st.plotly_chart(fig, use_container_width=True)
|
229 |
-
|
230 |
-
if 'product_name' in result_df.columns and 'price' in result_df.columns and result_df['price'].notna().any():
|
231 |
-
top_prices = result_df.sort_values('price', ascending=False).head(10)
|
232 |
-
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
233 |
-
st.plotly_chart(fig, use_container_width=True)
|
234 |
-
else:
|
235 |
-
st.warning("No data returned from the query.")
|
236 |
-
|
237 |
-
else:
|
238 |
-
st.info("Enter a question and click 'Ask Me' to get started!")
|
239 |
-
|
240 |
-
# Footer
|
241 |
-
st.sidebar.markdown("---")
|
242 |
-
st.sidebar.subheader("Example Queries")
|
243 |
-
st.sidebar.info("""
|
244 |
-
Try these example queries to explore the dashboard:
|
245 |
-
|
246 |
-
1. What are the top 5 most expensive products in the Electronics category?
|
247 |
-
2. What is the average price and total stock for each category?
|
248 |
-
3. List the all the products?
|
249 |
-
4. What is the distribution of prices for products supplied by each supplier?
|
250 |
-
5. Which products have a stock quantity less than 30?
|
251 |
-
|
252 |
-
Feel free to modify these queries or ask your own questions!
|
253 |
-
""")
|
254 |
st.sidebar.warning("© AutomatiX - Powered by Streamlit and Google Gemini")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import ast
|
6 |
+
import google.generativeai as genai
|
7 |
+
from io import StringIO
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Configure Genai Key
|
14 |
+
# genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
|
15 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
16 |
+
|
17 |
+
# Function to load Google Gemini Model and provide queries as response
|
18 |
+
def get_gemini_response(question, prompt):
|
19 |
+
model = genai.GenerativeModel('gemini-pro')
|
20 |
+
response = model.generate_content([prompt[0], question])
|
21 |
+
return response.text.strip()
|
22 |
+
|
23 |
+
# Function to load data from CSV
|
24 |
+
@st.cache_data
|
25 |
+
def load_data():
|
26 |
+
# This is a sample CSV content. In practice, you'd read this from a file.
|
27 |
+
csv_content = """
|
28 |
+
id,product_name,category,price,stock_quantity,supplier,last_restock_date
|
29 |
+
1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01
|
30 |
+
2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15
|
31 |
+
3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10
|
32 |
+
4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20
|
33 |
+
5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05
|
34 |
+
6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28
|
35 |
+
7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15
|
36 |
+
8,Backpack,Bags,39.99,60,TravelGear,2024-02-10
|
37 |
+
9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20
|
38 |
+
10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30
|
39 |
+
"""
|
40 |
+
df = pd.read_csv(StringIO(csv_content))
|
41 |
+
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
42 |
+
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
43 |
+
return df
|
44 |
+
|
45 |
+
# # Function to execute pandas query
|
46 |
+
# def execute_pandas_query(df, query):
|
47 |
+
# try:
|
48 |
+
# # This is a very simple and unsafe way to execute queries.
|
49 |
+
# # In a real application, you'd need to parse the SQL and translate it to pandas operations.
|
50 |
+
# result = eval(f"df.{query}")
|
51 |
+
# return result
|
52 |
+
# except Exception as e:
|
53 |
+
# st.error(f"An error occurred: {e}")
|
54 |
+
# return pd.DataFrame()
|
55 |
+
|
56 |
+
# # Define Your Prompt
|
57 |
+
# prompt = [
|
58 |
+
# """
|
59 |
+
# You are an expert in converting English questions to pandas DataFrame operations!
|
60 |
+
# The DataFrame 'df' has the following columns:
|
61 |
+
# id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
62 |
+
|
63 |
+
# Examples:
|
64 |
+
# - How many products do we have in total?
|
65 |
+
# The pandas operation will be: len()
|
66 |
+
# - What are all the products in the Electronics category?
|
67 |
+
# The pandas operation will be: query("category == 'Electronics'")
|
68 |
+
|
69 |
+
# The pandas operation should be a valid Python expression that can be applied to a DataFrame 'df'.
|
70 |
+
# """
|
71 |
+
# ]
|
72 |
+
|
73 |
+
# Function to execute pandas query
|
74 |
+
# def execute_pandas_query(df, query):
|
75 |
+
# try:
|
76 |
+
# # Remove any 'df.' prefixes from the query
|
77 |
+
# query = query.replace('df.', '')
|
78 |
+
|
79 |
+
# # Execute the query
|
80 |
+
# if query.startswith('query'):
|
81 |
+
# # For filtering operations
|
82 |
+
# result = df.query(query.split('(', 1)[1].rsplit(')', 1)[0].strip('"\''))
|
83 |
+
# elif query.startswith('groupby'):
|
84 |
+
# # For groupby operations
|
85 |
+
# group_col, agg_func = query.split('.', 2)[1:]
|
86 |
+
# result = eval(f"df.groupby('{group_col}').{agg_func}")
|
87 |
+
# else:
|
88 |
+
# # For other operations
|
89 |
+
# result = eval(f"df.{query}")
|
90 |
+
|
91 |
+
# return result
|
92 |
+
# except Exception as e:
|
93 |
+
# st.error(f"An error occurred: {e}")
|
94 |
+
# return pd.DataFrame()
|
95 |
+
|
96 |
+
# # Define Your Prompt
|
97 |
+
# prompt = [
|
98 |
+
# """
|
99 |
+
# You are an expert in converting English questions to pandas DataFrame operations!
|
100 |
+
# The DataFrame 'df' has the following columns:
|
101 |
+
# id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
102 |
+
|
103 |
+
# Examples:
|
104 |
+
# - How many products do we have in total?
|
105 |
+
# The pandas operation will be: shape[0]
|
106 |
+
# - What are all the products in the Electronics category?
|
107 |
+
# The pandas operation will be: query("category == 'Electronics'")
|
108 |
+
# - What is the average price of products in each category?
|
109 |
+
# The pandas operation will be: groupby('category').mean()['price']
|
110 |
+
|
111 |
+
# The pandas operation should be a valid Python expression that can be applied to a DataFrame without the 'df.' prefix.
|
112 |
+
# """
|
113 |
+
# ]
|
114 |
+
|
115 |
+
# Function to safely evaluate a string as a Python expression
|
116 |
+
def safe_eval(expr, df):
|
117 |
+
try:
|
118 |
+
# Parse the expression
|
119 |
+
parsed = ast.parse(expr, mode='eval')
|
120 |
+
|
121 |
+
# Define allowed names
|
122 |
+
allowed_names = {
|
123 |
+
'df': df,
|
124 |
+
'query': df.query,
|
125 |
+
'groupby': df.groupby,
|
126 |
+
'mean': pd.DataFrame.mean,
|
127 |
+
'sum': pd.DataFrame.sum,
|
128 |
+
'count': pd.DataFrame.count,
|
129 |
+
'max': pd.DataFrame.max,
|
130 |
+
'min': pd.DataFrame.min
|
131 |
+
}
|
132 |
+
|
133 |
+
# Evaluate the expression
|
134 |
+
return eval(compile(parsed, '<string>', 'eval'), allowed_names)
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"Error in query execution: {e}")
|
137 |
+
return pd.DataFrame()
|
138 |
+
|
139 |
+
# Function to execute pandas query
|
140 |
+
def execute_pandas_query(df, query):
|
141 |
+
try:
|
142 |
+
# Remove any 'df.' prefixes from the query
|
143 |
+
query = query.replace('df.', '')
|
144 |
+
|
145 |
+
# Execute the query
|
146 |
+
result = safe_eval(query, df)
|
147 |
+
|
148 |
+
# Convert result to DataFrame if it's not already
|
149 |
+
if not isinstance(result, pd.DataFrame):
|
150 |
+
if isinstance(result, pd.Series):
|
151 |
+
result = result.to_frame()
|
152 |
+
else:
|
153 |
+
result = pd.DataFrame({'Result': [result]})
|
154 |
+
|
155 |
+
return result
|
156 |
+
except Exception as e:
|
157 |
+
st.error(f"An error occurred: {e}")
|
158 |
+
return pd.DataFrame()
|
159 |
+
|
160 |
+
# Define Your Prompt
|
161 |
+
prompt = [
|
162 |
+
"""
|
163 |
+
You are an expert in converting English questions to pandas DataFrame operations!
|
164 |
+
The DataFrame 'df' has the following columns:
|
165 |
+
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
166 |
+
|
167 |
+
Examples:
|
168 |
+
- How many products do we have in total?
|
169 |
+
The pandas operation will be: len(df)
|
170 |
+
- What are all the products in the Electronics category?
|
171 |
+
The pandas operation will be: df.query("category == 'Electronics'")
|
172 |
+
- What is the average price of products in each category?
|
173 |
+
The pandas operation will be: df.groupby('category')['price'].mean()
|
174 |
+
|
175 |
+
The pandas operation should be a valid Python expression that can be applied to a DataFrame named 'df'.
|
176 |
+
Always include 'df.' at the beginning of your operations unless you're using a function like len().
|
177 |
+
"""
|
178 |
+
]
|
179 |
+
|
180 |
+
# Streamlit App
|
181 |
+
st.set_page_config(page_title="AutomatiX - Department Store Analytics", layout="wide")
|
182 |
+
|
183 |
+
# Load data
|
184 |
+
df = load_data()
|
185 |
+
|
186 |
+
# Sidebar for user input
|
187 |
+
st.sidebar.title("Swetha-Manisha-Kavya- PAVINAYA- AutomatiX - Department Store Chat Interface")
|
188 |
+
question = st.sidebar.text_area("Enter your question:", key="input")
|
189 |
+
submit = st.sidebar.button("Ask Me")
|
190 |
+
|
191 |
+
# Main content area
|
192 |
+
st.title("AutomatiX - Department Store Dashboard")
|
193 |
+
|
194 |
+
if submit:
|
195 |
+
with st.spinner("Generating and Fetching the data..."):
|
196 |
+
pandas_query = get_gemini_response(question, prompt)
|
197 |
+
# st.code(pandas_query, language="python")
|
198 |
+
|
199 |
+
result_df = execute_pandas_query(df, pandas_query)
|
200 |
+
|
201 |
+
if not result_df.empty:
|
202 |
+
st.success("Query executed successfully!")
|
203 |
+
|
204 |
+
# Display data in a table
|
205 |
+
st.subheader("Data Table")
|
206 |
+
st.dataframe(result_df)
|
207 |
+
|
208 |
+
# # Create visualizations based on the data
|
209 |
+
st.subheader("Data Visualizations")
|
210 |
+
|
211 |
+
col1, col2 = st.columns(2)
|
212 |
+
|
213 |
+
with col1:
|
214 |
+
if 'price' in result_df.columns and result_df['price'].notna().any():
|
215 |
+
fig = px.histogram(result_df, x='price', title='Price Distribution')
|
216 |
+
st.plotly_chart(fig, use_container_width=True)
|
217 |
+
|
218 |
+
if 'category' in result_df.columns:
|
219 |
+
category_counts = result_df['category'].value_counts()
|
220 |
+
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
221 |
+
st.plotly_chart(fig, use_container_width=True)
|
222 |
+
|
223 |
+
with col2:
|
224 |
+
if 'last_restock_date' in result_df.columns:
|
225 |
+
result_df['restock_month'] = result_df['last_restock_date'].dt.to_period('M')
|
226 |
+
restock_counts = result_df['restock_month'].value_counts().sort_index()
|
227 |
+
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
228 |
+
st.plotly_chart(fig, use_container_width=True)
|
229 |
+
|
230 |
+
if 'product_name' in result_df.columns and 'price' in result_df.columns and result_df['price'].notna().any():
|
231 |
+
top_prices = result_df.sort_values('price', ascending=False).head(10)
|
232 |
+
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
233 |
+
st.plotly_chart(fig, use_container_width=True)
|
234 |
+
else:
|
235 |
+
st.warning("No data returned from the query.")
|
236 |
+
|
237 |
+
else:
|
238 |
+
st.info("Enter a question and click 'Ask Me' to get started!")
|
239 |
+
|
240 |
+
# Footer
|
241 |
+
st.sidebar.markdown("---")
|
242 |
+
st.sidebar.subheader("Example Queries")
|
243 |
+
st.sidebar.info("""
|
244 |
+
Try these example queries to explore the dashboard:
|
245 |
+
|
246 |
+
1. What are the top 5 most expensive products in the Electronics category?
|
247 |
+
2. What is the average price and total stock for each category?
|
248 |
+
3. List the all the products?
|
249 |
+
4. What is the distribution of prices for products supplied by each supplier?
|
250 |
+
5. Which products have a stock quantity less than 30?
|
251 |
+
|
252 |
+
Feel free to modify these queries or ask your own questions!
|
253 |
+
""")
|
254 |
st.sidebar.warning("© AutomatiX - Powered by Streamlit and Google Gemini")
|