import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig from peft import PeftModel MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Storytell AI Welcome to the Storytell AI space, crafted with care by Ranam & George. Dive into the world of educational storytelling with our [Storytell](https://huggingface.co/ranamhamoud/storytell) model. This iteration of the Llama 2 model with 7 billion parameters is fine-tuned to generate educational stories that engage and educate. Enjoy a journey of discovery and creativity—your storytelling lesson begins here! """ LICENSE = """

--- As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): bnb_config = BitsAndBytesConfig( load_in_8bit=True, bnb_4bit_compute_dtype=torch.float16, ) model_id = "meta-llama/Llama-2-7b-chat-hf" base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",quantization_config=bnb_config) model = PeftModel.from_pretrained(base_model,"ranamhamoud/storytell") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token def make_prompt(entry): return f"### Human: YOUR INSTRUCTION HERE,ONLY TELL A STORY,INCLUDE AT LEAST AN MCQ, FILL IN THE BLANK AND TRUE OR FALSE: {entry} ### Assistant:" @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.4, # Lower -> less random top_p: float = 0.1, # Lower -> less random, considering only the top 10% of tokens at each step top_k: int = 1, # Least random, only the most likely next token is considered repetition_penalty: float = 1.0, # No repetition penalty ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": make_prompt(message)}) enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True) input_ids = enc.input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) final_story = "".join(outputs) conversation_id = save_chat_history(chat_history + [(message, final_story)]) yield f"Conversation ID: {conversation_id}" chat_interface = gr.ChatInterface( fn=generate, stop_btn=None, examples=[ ["Can you explain briefly to me what is the Python programming language?"], ["I'm curious about Merge Sort."], ["Teach me about conditionals."] ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()