File size: 1,045 Bytes
81b1a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import torch.nn as nn
from models.modules.mlp import MLPLayer
class BlockA(nn.Module):
def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
super(BlockA, self).__init__()
inter_channels = in_channels
self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
self.norm1 = nn.LayerNorm(inter_channels)
self.ffn = MLPLayer(in_features=inter_channels,
hidden_features=int(inter_channels * mlp_ratio),
act_layer=nn.GELU,
drop=0.)
self.norm2 = nn.LayerNorm(inter_channels)
def forward(self, x):
B, C, H, W = x.shape
_x = self.conv(x)
_x = _x.flatten(2).transpose(1, 2)
_x = self.norm1(_x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x = x + _x
_x1 = self.ffn(x)
_x1 = self.norm2(_x1)
_x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x = x + _x1
return x |